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Abstract

The work presented in this thesis is dedicated to studies of stabilization of Bloch
oscillations of ultracold atoms in a one-dimensional vertical optical lattice under
the influence of the gravitational force. The atoms simultaneously interact with
both the lattice potential and a unidirectionally pumped optical ring cavity
whose vertical arm is collinear with the optical lattice. In the proposed scheme,
the atoms not only exchange photons between the optical lattice laser beams,
but also collectively scatter light from the pump into the reverse cavity mode.

The initial investigation of the system without the cavity allows understand-
ing of the importance of the perfectly adiabatic atomic motion in the observation
of stable Bloch oscillations and how easily the adiabaticity can be broken due
to a very fast switch-on of the lattice or its amplitude and phase modulation.
Under certain parameter regimes, adding the ring cavity to the system provides
a surprisingly positive feedback on the atomic dynamics. It is found that, while
acting back on the atoms, the cavity field establishes a mode-locking mecha-
nism which assists adiabatic rapid passages between adjacent momentum states.
Thus, the cavity-induced feedback mechanism enforces the adiabaticity of the
process and reveals a regime where the Bloch oscillations are self-synchronized
for long times. This stabilization technique is shown to steer the atoms to the
lowest Bloch band preventing the problem of interband tunneling. A demon-
stration is also made of the ability of the system to stabilize the atomic Bloch
oscillations against technical amplitude or phase noise and even suppress de-
phasing due to the atom-atom interactions.

Furthermore, the response of the system to the atomic motion is gener-
ated in the form of perfectly detectable periodic bursts of light emitted into
the counter-propagating cavity mode. Thus, the system offers a continuous
and reliable non-destructive method to monitor the Bloch oscillations dynamics
without perturbing their periodicity by detecting the scattered light transmit-
ted through the cavity. All features studied in this work may be crucial for
future improvements of the design of atomic gravimeters based on recording
Bloch oscillations.
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Chapter 1

Introduction

1.1 Bloch oscillations in solids

The phenomenon of Bloch oscillations was first predicted theoretically by F.Bloch
while studying the electrical properties of crystals [1]. In particular, the prob-
lem of an electron confined in a general periodic potential under the action of
a constant electric field has been considered [2], and the motion of the electron
is proven to be oscillatory instead of uniform. Here is a revision of the main
concepts of the semiclassical model describing how, in the absence of collisions,
the position r and wave vector k of each electron evolve in the presence of an
externally applied electric field.

The Schrödinger equation for an electron with mass m in a full periodic
potential of ions V (r) = V (r + R) valid for all Bravais lattice vectors R,

Hψ(r) =

[
− h̄

2m
∇2 + V (r)

]
ψ(r) = εψ(r), (1.1)

is expected to have many stationary solutions ψ
nk called Bloch levels. Indeed,

according to the Bloch’s theorem [3], the solutions of the Schrödinger equation
are found in the Bloch form

ψ
nk(r) = eikrU

nk(r), (1.2)

where plane waves eikr are modulated by the function U
nk which is determined

by the periodic boundary condition Unk(r) = Unk(r + R), but has no simple
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Chapter 1. Introduction

explicit form. Thus, for a given wave vector k there is an infinite number of
solutions with energies εn(k) labeled with band index n. The set of functions
εn(k) has an upper and lower bounds forming an energy band. The electronic
band structure successfully used to explain many physical properties of solids
describes such energy bands, i.e., those energy intervals that an electron may
belong to within a solid, together with the ranges of energy the electron is not
allowed to have, called band gaps. The semiclassical model takes εn(k) as given
functions, so the description is based entirely on the knowledge of the band
structure of a solid, while the explicit information about the periodic potential
of the ions is not provided. For a fixed band n, both ψ

nk and their energies
εn(k) vary continuously with k, and the relations

ψ
n,k+K = ψ

nk, (1.3)

εn(k + K) = εn(k) (1.4)

are valid for any reciprocal lattice vector K. Therefore, the solutions can be
fully characterized by their behavior in a single uniquely defined primitive cell
of the reciprocal k-space, called Brillouin zone.

The wave function ψn(r, t) constructed similarly to the free electron wave
packet [3] is taken as a wave packet of Bloch levels ψ

nk from a given band:

ψn(r, t) =
∑
k′

g(k′)ψ
nk′(r)exp

[
− i
h̄
εn(k′)t

]
, (1.5)

where g(k′) ≈ 0 for |k′ − k| > ∆k with ∆k being the spread in wave vector,
which is assumed to be small compared to the Brillouin zone dimensions, so
that the energy εn(k) does not vary much over the Bloch levels present in the
wave packet. In order to evaluate the spread of the wave packet (1.5), the
points r = r0 +R separated by a Bravais lattice vector R are considered. Then,
according to the basic rules for wave packets, the function ψn(r0 + R) becomes
notable in the region ∆R ≈ 1/∆k which is much larger than the lattice constant
d (∆R � d), since the wave vector is well defined on the scale of the Brillouin
zone of the order of 1/d (∆k � 1/d). This result is totally independent of the
value of r0, so the semiclassical model deals with a wave packet spread over a
large number of primitive cells, which is schematically demonstrated in Fig.1.1.
Therefore, the semiclassical model is characterized by the fact that the periodic
potential of the ions must be treated quantum mechanically, since it varies over
the regions essentially smaller compared to the dimensions of the wave packet,
while the applied electric field is assumed to change slowly on the scale of the
considered lattice and can be described classically (see Fig.1.1).
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1.1. Bloch oscillations in solids

dimension of the wave packet

lattice constant

wavelength of the applied electric field

x

d

Figure 1.1: Schematic representation of the semiclassical model. The wave
packet is spread over many primitive cells of the lattice, so the classical descrip-
tion of the periodic potential is no longer suitable, while the applied electric field
varies over the regions much greater than the dimensions of the wave packet and
can be treated classically.

The semiclassical model is also based on the assumption that the externally
applied electric field is weak enough to induce the interband transitions and
it affects only the position and wave vector of an electron, while the energy
spectrum of the system remains unmodified. The time evolution of an electron
with charge e, position r, wave vector k and band index n in the presence of an
external electric field E(r, t) is described by the following equations of motion:

ṙ = υn(k) =
1

h̄

∂εn(k)

∂k
, (1.6)

h̄k̇ = −eE(r, t), (1.7)

where υn(k) is the velocity of the electron, and the functions εn(k) periodic
in k-space are assumed to be known in the frame of the semiclassical model.
Eq.(1.7) has the solution

k(t) = k(0)− eEt

h̄
(1.8)

which demonstrates that in time t the wave vector of each electron is shifted by
the same amount. However, it is impossible to obtain a current with a configu-
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Chapter 1. Introduction

0	   k	  band	  minimum	  

zone	  edge	  zone	  edge	  

Figure 1.2: The energy ε and velocity υ of an electron within a single energy
band as functions of k in one dimension. The direct dependence on time can
be found using the expression k(t) = k(0) − eEt/h̄. The velocity is increasing
linearly with k in the vicinity of the band minimum and gets its maximum value
as the right edge of the zone is approached, thereafter it is decreased significantly
and turns to zero at the zone boundary. This unusual dynamics is due to an
extra force acting on the electron, which is created by the periodic potential.

ration similar to the case of free electrons, in which the velocity is proportional
to k and grows linearly in time. In the semiclassical model, the current is
proportional to the velocity of the electron

υ(k(t)) = υ

(
k(0)− eEt

h̄

)
, (1.9)

but this velocity is clearly not proportional to k unlike the free electrons case.
Since the function υ(k) is periodic in the reciprocal lattice, it is a bounded
function of time, and its behavior is oscillatory when the field E is parallel to a
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1.1. Bloch oscillations in solids

reciprocal lattice vector. This phenomenon is illustrated in Fig.1.2 where, for a
certain energy band, both functions ε(k) and υ(k) are given in one dimension.
Even though the velocity is linearly increasing near the band minimum and
reaches its maximum value as the zone boundary is approached, it drops down
significantly and vanishes at the zone edge with increasing k. Therefore, in the
region of k between the maximum of the velocity and the right zone edge, the
electron is accelerated in the direction opposite to the externally applied electric
field. Such peculiar behavior is caused by an additional force produced by the
periodic potential. In the semiclassical model, the explicit form of the potential
is not provided, but the information about it is stored in the functional form
of ε(k). Thus, if an electron is represented by a wave packet confined into a
single energy band, the applied electric field forces the electron to move in the
direction of the field towards the levels in which the electron is most likely to
be reflected back in the opposite direction by the lattice until it is stopped by
the field, whereupon the oscillatory motion is repeated.

This fundamental description explains how electrons execute Bloch oscilla-
tions within a solid under the action of a constant external electric field. This
remarkable feature of electrons, however, has never been observed experimen-
tally because of the scattering of electrons by the lattice defects or impurities in
natural crystals. However, this effect has been recently seen in semiconductor su-
perlattices [4–6], where shorter oscillation periods have been obtained by taking
longer spacing of the structures. Furthermore, due to development of techniques
in laser cooling of atoms [7, 8], new systems which use ultracold atomic clouds
in optical lattices instead of electrons in periodic crystalline potentials have re-
cently appeared, allowing study of Bloch oscillations [9–11]. Such systems, as
discussed in Sec.1.3, may serve as useful tools for high precision measurements
due to extremely long coherence times and absence of defects in optical lattices.

11



Chapter 1. Introduction

1.2 Bloch oscillations in optical lattices

The behavior of ultracold atoms in optical lattices is very similar to the physics
of an electron gas in an ideal crystalline solid [12], since both an atom moving
in an optical lattice and an electron in a solid can be described as quantum
particles interacting with a periodic potential, as it is done, for example, in
the previous section using the semiclassical description. Here is an alternative
representation of the origin of Bloch oscillations.

In the one-dimensional case, if a constant external force F is suddenly applied
to a particle with mass m and momentum p in a periodic potential of particular
choice V (x) = V0 cos2(kx) with k = π/d related to the lattice spacing d and V0
representing the strength of the sinusoidal potential, the resulting Schrödinger
equation can be written as:

ih̄
∂

∂t
ψ = (H0 − Fx)ψ, (1.10)

where

H0 =
p2

2m
+ V0 cos2(kx). (1.11)

According to the standard theory of Bloch oscillations [13–18], the eigenfuctions
χn,q(x) of H0 are Bloch waves

χn,q(x) = eiqxUn,q(x) (1.12)

that generally depend on the position x, band index n and the quantum number
q called quasimomentum restricted to the first Brillouin zone −π/d ≤ q ≤ π/d.
Functions Un,q(x) = Un,q(x+d) have the same periodicity of the lattice potential
and satisfy the Schrödinger equation[

(p+ h̄q)2

2m
+ V0 cos2(kx)

]
Un,q(x) = εn,qUn,q(x), (1.13)

where the eigenenergies εn,q of the Hamiltonian H0 are periodic functions of the
quasimomentum q with period 2π/d.

For the full Hamiltonian H0 − Fx the following gauge transformation can
be made:

ψ(x, t) = exp(iF tx/h̄)ψ̃(x, t), (1.14)

yielding the Schrödinger equation

ih̄
∂

∂t
ψ̃(x, t) =

[
(p+ Ft)2

2m
+ V0 cos2(kx)

]
ψ̃(x, t). (1.15)
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1.2. Bloch oscillations in optical lattices

Comparing this equation with Eq.(1.13) it can be seen that the effect of the ap-
plied external force F is to evolve the quasimomentum according to the Bloch’s
acceleration theorem [1]:

q(t) = q(0) +
Ft

h̄
, (1.16)

where q(0) is the quasimomentum at t = 0. Setting q(0) = 0, the corresponding
Bloch wave within the adiabatic approximation that the rate of change U̇/U is
too small to excite higher bands, i.e., when F is weak enough, has the following
form [19]:

ψ̃(x, t) = Un,q(t)(x) exp

(
− i
h̄

∫ t′

εn,q(t′)dt
′

)
(1.17)

with Un,q(t)(x) being the instantaneous solution of Eq.(1.13).
The phenomenon of Bloch oscillations performed under the action of the

constant force F is explained in Fig.1.3 in terms of quasimomentum q given in
the reduced-zone scheme. When q(t) reaches the edge of the Brillouin zone at
π/d is is mapped to the identical point q = −π/d, giving rise to the oscillatory
behavior. After one Bloch period τB = h/(Fd) the quasimomentum fully scans
the first Brillouin zone and returns to the same starting value of q(0). Since
the external force induces a uniform motion in quasimomentum space, the wave
function ψ̃(x, t) is also periodic in time with period τB , which corresponds to
oscillations in real space.

t	  

q	  

π/d	  

-‐π/d	  

τb /2 τb 3τb/2 2τb 

Figure 1.3: Time-dependent quasimomentum q(t) given by Eq.(1.16) in the first
Brillouin zone restricted to −π/d ≤ q ≤ π/d.
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Chapter 1. Introduction

A constant external force driving the Bloch dynamics in systems of ultracold
atoms in optical lattices can be provided by either a constant acceleration of the
confining potential or by a real force, e.g., gravity. The former possibility was
used in the first experiment on Bloch oscillations with cold atoms [9]. A cloud of
cold cesium atoms was trapped in an optical lattice that was then accelerated by
linearly increasing the frequency difference between the two counter-propagating
lattice beams. In the moving reference frame, the effect of the acceleration a
was indeed replaced by an inertial constant force F = −ma. Fig.1.4 shows the
momentum distribution of the Bloch states in the accelerated frame between
t = 0 and t = τB . It is seen that as the force drives the Bloch dynamics, the
peak at zero velocity starts moving towards higher velocities until the atomic
cloud experiences a Bragg reflection at time τB/2 at the edge of the first Brillouin
zone h̄k, after which the atoms are accelerated again starting from the other
edge −h̄k. This provided the first direct demonstration of the atomic Bloch
oscillations that could be observed for several cycles with no signal decay.

Figure 1.4: Demonstration of the Bloch dynamics in the fundamental band in
the first experiment on Bloch oscillations with cold atoms in a periodic potential.
Adapted from Ben Dahan et al. (1996) [9].
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1.2. Bloch oscillations in optical lattices

A precise determination of the Bloch oscillation period τB may provide an ac-
curate measurement of the h/m ratio which is remarkably important in metrol-
ogy, since it allows to define the fine structure constant [20, 21]. If the optical
lattice moves with the acceleration a, the Bloch oscillation period can be defined
as

τB =

(
h

m

)
1

ad
. (1.18)

The lattice spacing d and the acceleration a are known with very high precision,
thus, the value of h/m can be determined accurately.

The effect of Bloch oscillations can be used not only for high-precision mea-
surements of fundamental constants. Ultracold atoms undergoing Bloch oscilla-
tions may serve as very accurate sensors of forces as well. The force F making
the atoms execute Bloch oscillations is given by

F =
h

τBd
, (1.19)

i.e., there is no dependence on the potential depth, only the lattice spacing d
which can be very accurately determined is entering this expression. Therefore,
with this approach, the measurement of the force is reduced to the determination
of the frequency 1/τB which can be measured with high precision.

The precision of the described above measurements is literally given by the
uncertainty in the Bloch period τB . Several thousands of Bloch oscillations
have been observed in existing experiments, hence, the Bloch oscillation period
can be defined more precisely. Recent experiments with phase or amplitude
modulated optical lattices [22, 23] have allowed to determine even the local
gravity acceleration with the relative uncertainty in the range of 10−7 [24]. The
application of Bloch oscillations of ultracold atoms in optical lattices to high-
precision gravity measurements is discussed in detail in the next section.
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Chapter 1. Introduction

1.3 Atomic Bloch oscillations with ring cavities

The research project of this thesis originates from the idea to verify whether
Bloch oscillations of ultracold atoms confined in a vertical standing light wave
created by light fields inside a laser-pumped optical ring cavity can be monitored
non-destructively. This result is relevant for the development of a new genera-
tion of gravity sensors based on atomic interferometry. The impressive precision
of state-of-the-art gravity sensors makes them a useful tool in a wide range of ap-
plications in industry, such as worldwide gravity surveys along seismic lines, oil
and gas fields prospection [25–27], geophysical research [28–30], and inertial nav-
igation [31,32]. They are equally important in fundamental research, where they
are used for measurements of fundamental constants [20,33–38], tests of general
relativity [39–45] and the precise measurements of Casimir forces [46–50]. Grav-
ity measurements based on atom interferometry with sensitivities in the order of
2×10−8 m/s2 in 1s integration time and accuracies in the order of 4×10−9 m/s2

have been demonstrated [51–54]. A higher precision could be achieved within
longer integration times that are, however, limited by slow repetition rates due
to the fact that the test mass must be raised before being dropped in the field
of gravity, which takes a finite amount of time. This drawback motivated ideas
on how to recycle the test mass in a continuous fashion. An important step to
solve this problem is to use Bloch oscillations.

With the realization of cold [9] and ultracold atoms in optical lattices [55–57],
it became possible to produce Bloch oscillations with much longer coherence
times than with electrons in superconducting superlattices, characterized by
rapid dephasing due to impurities. While initially the force acting on the atoms
and inducing oscillations was simulated by accelerating the optical lattice, in
subsequent experiments the acceleration was replaced by the force arising from
gravity. The frequency of Bloch oscillations, νb = mg/2h̄kl, is proportional to
the test mass m, the gravitational acceleration g and the periodicity λl/2 = π/kl
of the standing wave. Very low damping rates have allowed to record 10000
Bloch oscillation cycles in more than 20s [58]. With such long coherence times
Bloch oscillations of cold atoms are suitable for high accuracy measurements.
Recently, new gravimeters have been developed based on the detection of Bloch
oscillations of atoms confined in a far-detuned vertical standing light wave poten-
tial, yielding resolutions in the range of 10−7 [24, 58, 59]. In these experiments,
the detection of the gravitational acceleration with a falling atomic cloud is
done by absorption imaging techniques or precise mapping of the atomic veloc-
ity distribution along the vertical axis using Doppler-sensitive Raman transi-
tions. However, for each measurement a new atomic sample must be prepared,
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1.3. Atomic Bloch oscillations with ring cavities

cooled, loaded into the optical lattice and finally accelerated. Varying the evo-
lution time, Bloch oscillations are reconstructed, from which the acceleration
force can be extracted based on a large number of performed measurements.
This process is laborious and suffers from uncertainties and fluctuations in the
initial state in which the atomic cloud is prepared. To overcome the destructive
nature of the measurements in atomic gravimeters a new technique that allows
monitoring of the Bloch oscillations in vivo has been proposed [60,61].

The measurement process can be dramatically accelerated if instead of mak-
ing successive images of the atomic motion, the impact of the atomic displace-
ment on the confining standing light wave is monitored. Indeed, recent exper-
iments have shown that atoms moving in a stationary light wave can modify
its amplitude or phase, assuming that the wave is sufficiently decoupled from
the driving laser beams [62–64]. A way to satisfy this requirement is to let
the standing wave form inside an optical ring cavity, like schematically shown
in Fig.1.5. The role of the cavity is to amplify interaction between the atoms
and laser light. Due to the atomic motion inside the ring cavity, the phase

Figure 1.5: Schematic representation of a three-mirror ring cavity designed for
continuous detection of Bloch oscillations of atoms falling inside a vertical light
wave sustained by the cavity.
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Chapter 1. Introduction

and intensity of the light transmitted through one of the cavity mirrors be-
come modulated. Remarkably, the Bloch oscillation period becomes unaffected
during the evolution, so that the transmitted light provides an opportunity to
continuously observe the Bloch oscillations dynamics. Thus, the cavity fields
themselves carry signatures of the Bloch oscillations that can be monitored in
a non-destructive way.

The first proposal on such continuous monitoring of Bloch oscillations avoid-
ing the need for numerous measurements of the atomic velocity after given evo-
lution times [60], however, suffers from the assumption that the probe field is
very weak so that the continuous measurement is performed without affecting
the atomic dynamics. The neglected backaction of the probe field on the atoms
is surely the main drawback of that proposal, since the cavity field is shown
to act back on the atomic motion [65], establishing a mode-locking mechanism
that causes the synchronization of the Bloch oscillations for a long time [66].
The mode-locking mechanism and stabilization of Bloch oscillations even in the
presence of unfavorable effects are subjects of discussion in this thesis. The
installation of the corresponding experiment oriented on a non-destructive ob-
servation of Bloch oscillations of ultracold atoms in a ring cavity is expected to
be accomplished soon by the Optics Group at the Institute of Physics of São
Carlos, University of São Paolo, Brazil. It is important to emphasize that the
goal of that experiment is not to construct a better gravimeter, but to pro-
vide the proof of principle that continuous operation of an atomic gravimeter is
technically feasible and could be a realistic way to improve its performance.

88Sr ultracold atoms are planned to be used in the actual experiment for
a number of reasons. The coherence time of the system may be reduced due
to technical imperfections, interatomic collisions and perturbations by electro-
magnetic fields, and the usage of strontium allows to eliminate some of these
problems. Its extremely small collisional scattering length entails a negligible
collision rate, and the absence of any angular momentum in the ground state
reduces coupling to electric and magnetic stray fields [67, 68]. However, for the
theoretical investigation of the phenomenon of interest the choice of the atomic
species is not crucial. Thus, the theoretical model admits also alkali atoms which
are most commonly employed in experiments involving optical cooling. A care-
ful selection of parameters for the chosen atomic species is required though.

The design of already made vertical ring-shaped cavity and magneto-optical
trap (MOT) is presented in Fig.1.6. The location of the MOT is slightly shifted
from that of the cavity mode, so that the trapping and cooling processes are not
perturbed by the presence of the ring cavity. By adjusting the magnetic fields
of the MOT the atomic cloud can be moved inside the cavity. Then, the laser

18



1.3. Atomic Bloch oscillations with ring cavities

Figure 1.6: Design of the three-mirrors ring cavity located in an ultrahigh vac-
uum chamber. Also shown are the MOT beams (big cylinders) and the narrow
laser beams passing through the ring cavity.

beams pumping the two counter-propagating cavity modes are switched on at an
intensity calculated such that the atoms perform Bloch oscillations. The light
fields leaking out of the cavity modes are phase-matched on a photodetector, and
the beat signal is searched for signatures revealing the Bloch oscillations. Once
the experimental apparatus is completed, the objective is to make the atoms
perform Bloch oscillations in the natural gravitational field of the earth, leaving
visible fingerprints in the dynamics of the intensity and phase of the ring cavity
fields. Then the major goal is to make sure that the proposed non-destructive
technique of monitoring the atomic Bloch oscillations via their backaction on
the cavity fields allows to gather information on the periodicity of the Bloch
oscillations faster than other conventional techniques [24,58,59]. If this process
can be sped up considerably, a better signal-to-noise ratio can be obtained in
shorter integration times. In other words, in a given time higher precision can
be reached for the determination of the gravitational acceleration.
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Chapter 1. Introduction

Theoretical investigation of Bloch oscillations of ultracold atoms inside a
unidirectionally pumped vertical optical ring cavity under the action of grav-
ity and the described above non-destructive technique to continuously monitor
their dynamics are subjects of this work. In Chapter 2 the studied system is
introduced by the coupled atom-ring cavity equations which serve as the basis
for the numerical simulations presented in the thesis. It is important to consider
the system without the cavity first, since it allows to understand that perfectly
adiabatic atomic motion is essential to observe stable Bloch oscillations. The
given adiabaticity criteria can be easily broken, which leads to interband tun-
neling problem and atomic momentum drifts. The system without the cavity is
thus unreliable.

Chapter 3 considers the case when the ring cavity is added to the system.
The scattered field in the reverse cavity mode is shown to provide a positive
feedback on the atomic dynamics. This feedback mechanism enforces the adi-
abaticity even in the cases when the process is no longer adiabatic in the ab-
sence of the cavity. As a result, the tunneling to the next higher Bloch band
is self-suppressed and the Bloch oscillations become stabilized for long times.
Moreover, a detectable burst of light is emitted into the counter-propagating
cavity mode every time a Bloch oscillation happens. This provides a reliable
non-destructive monitor of the atomic Bloch oscillations without perturbing
their periodicity.

However, the system with the ring cavity is still sensitive to the choice of
parameters. It is demonstrated in Chapter 4 that there are two distinct regimes
in which the atom-cavity interaction are qualitatively different. For a strong col-
lective coupling, the Bloch oscillations are completely overruled by the collective
atomic recoil lasing instability, and the radiation field experiences multiple light
bursts per Bloch oscillation period. Therefore, this regime is not acceptable as
a reliable monitor of the atomic motion. However, if the collective coupling is
weak, the Bloch oscillations dynamics stay dominant and develop the synchro-
nized regime of interest.

Chapter 5 is dedicated to a detailed analysis of the weak collective coupling
regime. The cavity-induced feedback mechanism turns out to be capable of
refocusing the whole atomic population in the fundamental Bloch band after
some accidental excitation of higher bands, for example, by technical amplitude
or phase noise or a non-adiabatic switch-on of the confining lattice potential.
Thus, this regime demonstrates robustness against atomic momentum drifts,
certain fluctuations and even dephasing due to interatomic collisions. Conse-
quently, the considered system shows its potential for application as an optical
monitor of Bloch oscillations.
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Model

As mentioned in the introductory chapter, the theoretical work presented in
this thesis has been conducted in close relation to the experiment that is cur-
rently under construction at the Institute of Physics of São Carlos, University of
São Paolo, Brazil. Thus, the system under investigation corresponds to the ex-
perimental setup and the selected parameters tend to satisfy real experimental
conditions. This chapter is dedicated to a detailed description of a theoretical
model on interaction of a Bose-Einstein condensate (BEC) with laser light as an
application for non-destructive monitoring of the atomic motion and possible
future improvements of the design of atomic gravimeters based on recording
Bloch oscillations [60,69]. The novel scheme described in Sec.2.1 allows also the
analysis of a synchronization phenomenon in the motion of many atoms in the
framework of the studied model. This effect is known as collective atomic recoil
lasing (CARL) [62, 70–72]. On top of that, it is worth studying the simplified
system first (Sec.2.2) before turning to the investigation of the features of the
complex CARL-BEC model, covered in the next chapter. After an acceleration
frame is implemented to the system, some of the conditions necessary to se-
lect experimental parameters are clarified in Sec.2.2. If those conditions are for
some reason violated, the dynamics of the system experiences some undesirable
deviations in the simplified case.
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Chapter 2. Model

2.1 Gravitational CARL system

The examined model is given by a cloud of ultracold atoms confined in a vertical
optical standing wave, as depicted in Fig.2.1. This standing wave with the lat-
tice constant π/kl can, for instance, be generated by two external laser beams
detuned sufficiently far from the atomic resonance and intersecting at the loca-
tion of the atoms under the angle β defined by K sin(β/2) = kl, where K is the
wavenumber of the laser beams. A derivation of the angle β for some specific
parameters is provided in Appendix A. The externally imposed optical lattice
traps the atoms in a one-dimensional potential (h̄W0/2) sin(2klx) along the x
axis, where the potential depth is denoted by h̄W0. In addition to the effect
of the periodic potential, the atoms are exposed to the gravitational potential

Figure 2.1: Scheme of a ring cavity consisting of two high-reflecting mirrors
(HR) and one output coupler (OC) interacting with a Bose-Einstein condensate
(BEC) stored in one arm of the ring cavity. Only one cavity mode is pumped
(Ωp, k), the counterpropagating probe mode (α) is populated by backscattering
from the atoms. Two lasers (K1,2) crossing the cavity mode at the location
of the BEC under angles ±β/2 generate an optical lattice whose periodicity is
commensurate with the standing wave created by the pump and probe modes.
The atoms are also subject to an external accelerating force mg.
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2.1. Gravitational CARL system

mgx, where m is the atomic mass and g is the gravitational acceleration. As a
result, the atoms undergo Bloch oscillations with frequency νb = mg/2h̄kl [9]
under the influence of the applied gravitational force.

Then, an optical ring cavity is added to the system, letting the atoms simul-
taneously interact with its two counter-propagating cavity modes. The cavity
is unidirectionally pumped in the upwards direction, oppositely to the gravita-
tional force, by a laser beam with the wavenumber k (see Fig.2.1). The atomic
motion in such environment in the absence of the external optical lattice and
gravity, i.e., in the horizontal plane, has been experimentally shown [62,71,73,74]
to act back onto the intracavity light fields and modulate their phases and am-
plitudes detectable signatures. This backaction, called collective atomic recoil
lasing (CARL), in certain parameter regimes, evolves into a spontaneous for-
mation of a standing wave optical potential. It is thus reasonable to expect
observable signatures of the atomic Bloch oscillations when the externally im-
posed standing wave is commensurate with the one formed by the intracavity
fields, i.e., k = kl. The role of the cavity in the vertical gravitational configu-
ration in Fig.2.1 with the external optical lattice, as it is explained in the next
chapter, is to provide a positive feedback on the Bloch oscillations which become
stabilized via a mode-locking mechanism [65]. Remarkably, the Bloch oscillation
period remains unaffected by this feedback throughout the evolution. Therefore,
the cavity light field transmitted through the output coupler (OC) provides a
way to continuously observe the Bloch oscillations in vivo. This allows for high
precision force measurements with small atomic clouds in a cavity [61].

A symmetric three-mirror ring cavity with one right angle and the round
trip length L = 3.8 cm has been designed for the corresponding experiment.
Consequently, the free spectral range is δfsr = c/L = 7.76 GHz, where c is
the speed of light in vacuum. The two curved high reflecting mirrors (HR)
have radius ρ = 50 mm of the curvature, while the input coupler is plane.
Using the defined above parameters it is possible to obtain the free space waist
at the location of the atoms w0 = 70µm and the cavity mode volume V =

π
∫ L
0
w(z)2dz = 0.5 mm3. The size of the thermal atomic cloud depends on the

temperature, but can be made to fit into the waist. The spectral features of
the ring cavity are determined by the reflection capability of the high reflector
Rhr = 99.9% and the input coupler Ric = 99.7%, which allow to calculate

the cavity finesse F =
π(R2

hrRic)
1/6

1−(R2
hr
Ric)1/3

' 2000. Hence, the cavity linewidth is

κ = δfsr/F = 160ωr, where the recoil frequency is defined as ωr = h̄k2/2m.
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Chapter 2. Model

The Bloch oscillations dynamics in this work is discussed at the example
of an ultracold cloud of 87Rb atoms interacting with the light fields via their
D2-line (52S1/2 −→ 52P3/2) with the transition wavelength λ = 780nm, for
which the recoil frequency is ωr = (2π)3.75 kHz, the Bloch oscillation fre-
quency is νb = 0.035ωr and the transition linewidth is Γ = 1600ωr. With
d =

√
3πε0h̄Γ/k3 being the electric dipole moment of the atomic transition and

E1 =
√
h̄kc/(2ε0V ) the electric field generated by a single photon in the cavity

mode, where ε0 is the permittivity of free space, the atom-field coupling strength
is Ω1 = dE1/h̄ = 54ωr. The Rabi frequency generated by the incident pump
light of intensity Ip = 50mW/cm2 is

Ωp =
dEp
h̄

=
d

h̄

√
2Ip
cε0

= 6240ωr, (2.1)

and ∆ (taken positive for convenience) is the detuning of the laser frequency
ω from the atomic resonance. Thus, the atom-mediated pump-probe cou-
pling strength is U0 = Ω1Ωp/4∆. In the performed numerical simulations,
U0 = 0.04ωr is taken, and the cavity is loaded with N = 2 · 104 atoms. All
these parameters can be realized in state-of-the-art experiments without any
particular difficulty.

Indicating the probe mode with frequency ωs by the complex amplitude α,
where |α|2 is the average photon number, the interference between the pump
and probe modes generates a dipolar potential with the depth h̄αU0 along the
x axis of the optical ring cavity. Starting from the basic equations describing
the CARL-BEC model [75, 76] and disregarding for the moment the atomic
interaction in sufficiently dilute atomic clouds, the self-consistent equations of
motion for the probe mode α(t) and the atomic wave function ψ(x, t) can be
written in the following form:

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
− ih̄U0

[
α(t)e2ikx − α∗(t)e−2ikx

]
ψ(x, t)

− mgxψ(x, t) + h̄
W0

2
sin(2kx)ψ(x, t), (2.2)

dα(t)

dt
= NU0

∫
|ψ(x, t)|2e−2ikxd(2kx) + (iδ − κ)α(t) , (2.3)

where δ = ω − ωs is the pump-probe detuning.
The evolution of the system can be conveniently described in the accelerated

frame moving with the velocity gt along the positive direction of the x axis point-
ing downwards as in Fig.2.1. In this frame, the wave function is transformed
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2.1. Gravitational CARL system

according to ψ = ψ̃ exp(imgxt/h̄). Substituting α = α̃− α0 with α0 = W0/4U0

(W0 = 3.2ωr, which corresponds to |α0|2 = 400 photons in the pump mode),
into Eq.(2.2) and Eq.(2.3), the corresponding equations of motions become:

∂ψ̃

∂t
=

ih̄

2m

(
∂

∂x
+
imgt

h̄

)2

ψ̃ − U0

(
α̃e2ikx − α̃∗e−2ikx

)
ψ̃, (2.4)

dα̃

dt
= NU0

∫
|ψ̃|2e−2ikxd(2kx) + (iδ − κ)(α̃− α0) . (2.5)

It should be noted that Eq.(2.5) shows that the impact of the externally imposed
standing wave can be accounted for as an additional laser beam pumping the
probe mode at the rate α0κ.

If the size of the atomic sample is much larger than the radiation wavelength,
and its density is uniform, the atomic wave function ψ̃(x, t) may be expanded
into plane waves with periodicity 2kx,

ψ̃(x, t) =
1√
2π

∑
n

Cn(t)e2inkx, (2.6)

where |Cn|2 is the probability of finding the atoms in the nth momentum state
pn = n(2h̄k). Note that the atomic wave function is expanded in the momentum
states |pn〉 [77], rather than the often-used Bloch states |nb, q〉 with quasimo-
mentum q and the band index nb [78], discussed in the introduction. Using
the definitions of the Bloch oscillation frequency νb = mg/(2h̄k) and the single-
photon recoil frequency ωr = h̄k2/2m, Eqs.(2.4) and (2.5) are transformed into:

dCn
dt

= −4iωr(n+ νbt)
2Cn + U0 (α̃∗Cn+1 − α̃Cn−1) , (2.7)

dα̃

dt
= U0N

∑
n

C∗n−1Cn + (iδ − κ)(α̃− α0) . (2.8)

These equations describing the coupled atom-ring cavity dynamics represent the
basis of the numerical simulations of this work.
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Chapter 2. Model

2.2 Bloch oscillations dynamics without cavity

Without the cavity, the system under investigation is reduced to an ultracold
atomic cloud confined into a vertical periodic optical potential created by two
counter-propagating laser waves and subjected to a constant external force. In
this case, the atomic behavior in the light field of the two laser beams is examined
under the action of the gravitational acceleration g, and the revealed dynamics
can be interpreted in the usual Bloch oscillation picture. The initial momentum
p ' 0 of the atomic plane wave accelerated by gravity increases linearly until it
reaches a critical value at which the atomic wave is reflected and the momentum
is reversed. The ulterior dynamics is nothing but a continuous repetition of the
same process, i.e., the acceleration of the matter wave by the gravitational force
is followed by its Bragg reflection. The atomic Bloch oscillations can be viewed
as reflections at Brillouin zones [10] as, for example, shown in Fig.2.2 where the
energy spectrum of an atom in a periodic potential is given in the reduced zone
scheme limited to the first Brillouin zone as a function of quasimomentum q. In
the fundamental Bloch band the atom is forced to move in the direction of the
applied gravitational force until the zone edge is approached and the atom is
reflected back by the lattice till it is stopped again by gravity, after which the

quasimomentum    q/k 

en
er

gy
   

  E
/E

R
 

Figure 2.2: Left: Schematic representation of atoms dropping from node to
node inside a vertical optical standing wave under the action of gravity. Right:
Atoms accelerated within the lowest Bloch band being reflected at the edges
of the first Brillouin zone. The energies are expressed in recoil energy units
ER = (h̄k)2/2m.
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2.2. Bloch oscillations dynamics without cavity

oscillatory behavior is repeated.
An accelerated frame is commonly used to describe such a system [77]. In

this frame, the system is uniformly accelerated by gravity along the x axis, which
leads to a Doppler shift of the frequencies of the two counter-propagating light
fields. If the frequency difference is time-dependent, the lattice potential in the
accelerated frame is no longer a standing wave, and the effect of gravity acting
on the atoms in the laboratory frame manifests itself as a linear chirp in the first
term on the right-hand side of Eq.(2.7). In this section, the dynamics revealed
by the system in the absence of the ring cavity is studied in both laboratory
and accelerated frames. In particular, the cases of adiabatic and non-adiabatic
switch-on of the optical lattice are investigated as well as the variable lattice
potential depth. The system without the cavity appear to be very sensitive to
the choice of parameters and the way in which the lattice is turned on. Thus,
some specific conditions must be satisfied to observe regular Bloch oscillations
in this case.

2.2.1 Adiabatic rapid passage sequence

The atomic motion in a periodic potential is based on the photon redistribution
between the two counter-propagating laser beams creating the standing wave.
Due to the atom-field interaction, the atoms that are initially prepared in their
ground state with a momentum spread much smaller than 2h̄k (δp� 2h̄k) pop-
ulate excited momentum states during the evolution of the system. Assuming
that spontaneous emission is negligible, the atomic momentum in the acceler-
ated frame can only change by 2h̄k every time a photon is absorbed from one
beam of the optical lattice and re-emitted into the other one in a stimulated
way. This momentum transfer results in an upward force that in the laboratory
frame compensates for gravity. Note that in the considered case there are many
sequential resonance crossings happening at t = −nτb, where τb = 1/νb is the
Bloch period. At every crossing repeated periodically for n = −1,−2,−3,...,
the atoms change their momentum by 2h̄k and transfer to the negative n-mode
states. The frequency difference changing in time produces a sequence of such
transitions between momentum states. As a result, the atoms happen to be
coherently accelerated in the direction of the laser wave with higher frequency
from which the photons are absorbed and emitted into the other with lower
frequency.
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The way the momentum transfer is performed via scanning through the
resonance is known as the adiabatic rapid passage (ARP) method [79]. The
system prepared in an eigenstate at t = 0, when the frequency difference is
increased, adiabatically follows the evolution of the eigenstate, leading to a series
of momentum changes. If the initial frequency difference is zero, the atomic
momentum is periodically increased by 2h̄k at each resonance crossing, which
is a signature of Bloch oscillations in the fundamental band in the accelerated
frame [77]. The ARP method has been used extensively to create beam splitters
and mirrors for atomic interferometry [80, 81], for instance, accelerate atoms
trapped in optical potentials [10,82] and observe adiabatic population inversion
with light pulses [83,84]. However, a number of features distinguish the studied
system from previous ARP applications. Firstly, a non-dissipative regime is
considered since the internal atomic states are not involved into the dynamics
of the system. Secondly, it is possible to successfully produce a large number
of momentum transfers because the amount of states is unlimited. Lastly, the
momentum states are connected by a two-photon transition in the examined
model, while a one-photon transition is generally used [85].

To produce an efficient momentum transfer using the ARP method, some
adiabatic conditions must be satisfied for all sequential crossings. First of all, the
frequency difference ∆ω should vary slowly, so that the atoms can adiabatically
follow the eigenstates of the system, and hence the atomic transition from one
momentum state to another is complete. To make this happen, the rate at
which the eigenstates change must be small in comparison to the coupling rate,
i.e., ∆ω̇ � (W0/2)2. The adiabaticity may be easily violated by an increasing
chirp rate, and the non-adiabatic couplings causing a small amount of atoms to
remain in lower momentum states play an important role in this case. Thus, to
fulfill the adiabatic conditions and be able to have a full momentum transfer,
the chirp rate should not be too large.

The ARP conditions have been derived for a system with a time-dependent
frequency difference of the two counter-propagating optical fields interacting
with free atoms, which is analogous to the gravitational acceleration involved in
the considered system [77]. Those conditions can be tailored to fit the system
under investigation:

νb
8ωr
�
(
W0

16ωr

)2

� 1. (2.9)

Therefore, a properly chosen set of parameters needs to be used to make sure
the inequalities above are satisfied. In order to understand the interpretation
of these two conditions it is necessary to return to the laboratory frame. It
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2.2. Bloch oscillations dynamics without cavity

is clear that the dynamics of the Bloch oscillations associated with the atoms
being accelerated by the gravitational force in the laboratory frame is equivalent
to a sequence of adiabatic rapid passages between momentum states in the
accelerated frame. The first condition can then be read as the force driving the
atoms to perform Bloch oscillations should be weak enough to prevent interband
transitions, mg � (m/2k)(W0/2)2. This crucial criteria necessary to observe
stable Bloch oscillations ensures the adiabaticity of the process. The other
condition requires the optical lattice to be sufficiently weak, W0 � 16ωr, so
that the dynamics involves only two adjacent momentum states at a time and
the transfers are successive. This condition represents the so called weak binding
limit [86]. In the weak binding approximation, the periodic potential is assumed
to be quite shallow, and the atoms behave almost as if they were free. Indeed, the
atoms in deeper lattices are not allowed to be considered as free particles coupled
only at the edge of the Brillouin zone. More details about the time evolution
of the system for different values of the lattice depth are provided in Sec.2.2.5.
It can therefore be seen that satisfying the ARP conditions mentioned above is
crucial for a successful population transient, and the non-adiabatic transition
probability is required to be insignificantly small.

2.2.2 Two-state model

A mathematical description of the Bloch oscillations has been carried out ex-
tensively in the literature [17]. However, it is worth to demonstrate how the
considered model, adopting the momentum state picture (not to be confused
with the quasimomentum picture), describes the Bloch oscillations in the adia-
batic rapid passage (ARP) approximation.

For sufficiently weak optical lattices, W0/ωr � 16, the dynamics involves
only two adjacent momentum states [77], say n and n − 1, so that |Cn|2 +
|Cn−1|2 = 1. In this limit, Eqs.(2.7) and (2.8) can be reduced to a simple set of
Maxwell-Bloch equations:

dS

dt
= −iΛnS + U0α̃W , (2.10)

dW

dt
= −2U0 (α̃S∗ + α̃∗S) , (2.11)

dα̃

dt
= U0NS + (iδ − κ)(α̃− α0) , (2.12)
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where Λn = (ωr/4)(2n−1 + 2νbt) is the time-dependent detuning, S = C∗n−1Cn
is the interference term, and W = |Cn|2 − |Cn−1|2 is the population difference.
These equations admit the constant of motion

4|S|2 +W 2 = 1. (2.13)

In the bad cavity regime, κ� α0U0 and for δ = 0, the probe field from Eq.(2.12)
is approximated by

α̃ ≈ α0 +
U0NS

κ
. (2.14)

Then, the adiabatic following assumption that both S and W vary slowly in
time is made. The condition |dS/dt| � |ΛnS| and the assumption α̃ ≈ α0

(i.e., neglecting the cavity entirely) allow S to be expressed in terms of the
population difference W as S = −iU0α0W/Λn. Then, using the constant of
motion 4|S|2 +W 2 = 1, one finds:

W =
Λn√

4U2
0α

2
0 + Λ2

n

, S = −i U0α0√
4U2

0α
2
0 + Λ2

n

. (2.15)
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Figure 2.3: Evolution of the population difference W based on the expression
(2.15). Full atomic transfer from the momentum state n to n− 1 is achieved.
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Initially, the population differenceW = 1 since all the atoms reside in the nth
momentum state. However, there is a point where Λn → 0, thereby W → 0. As
time passes, the population difference becomes negative (see Fig.2.3), which is
equivalent to a transfer of the atoms to the state n−1. This confirms the validity
of the ARP assumption and provides an analytical proof of why the Bloch
oscillations are initiated. The ability of the ARP approximation to describe the
evolution of the system in the presence of the ring cavity will be considered in
the next chapter.

2.2.3 Average atomic momentum

Let us now turn to numerical studies of the system in the case when the optical
ring cavity is absent. By keeping α̃ = α0 constant the atomic backaction on
the cavity field is eliminated, and the influence of the cavity on the evolution of
the system is generally disregarded. This situation corresponds to the standard
case of a constant optical lattice. Eqs.(2.7) and (2.8) then reflect the usual
Bloch oscillation picture or equivalently, a sequence of adiabatic rapid passages
discussed above. This self-consistent set of equations represents the basis of the
numerical simulations.

The behavior of the average atomic momentum in the laboratory frame,
which is given by

< p >lab=< p > +νbt, (2.16)

is investigated first, where the average atomic momentum < p > in the acceler-
ated frame is determined by

< p >=
∑
n

n|Cn|2. (2.17)

Neglecting the contribution from the cavity field, Eq.(2.7) is integrated and
the obtained results are shown in Fig.2.4. In the standing reference frame, the
average atomic momentum < p >lab given in 2h̄k units is plotted as a function
of rescaled time νbt. One can immediately notice that the way in which the
optical potential is turned on has a great impact on the dynamics of the system.
The optical lattice can be optionally switched on abruptly, so that a constant
light field is imposed even at the very beginning of the evolution, or switched
on adiabatically as it is done in general experimentally. Both these cases are
studied, and the results are provided below.
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Figure 2.4: Average atomic momentum in the laboratory frame in 2h̄k units in
the absence of the cavity as a function of rescaled time νbt. Different methods
of the lattice switch-on are investigated: α0 = 20 corresponds to a sudden
switching of the optical potential (blue curve), while an adiabatic switch-on
is performed via α0 = α̃0 (1− exp(−γt)) with α̃0 = 20 and various values of
the amplitude rising rate γ. The evolution of the system for critical values of
γ = 0.02ωr and γ = 10ωr, for which the adiabaticity of the process is already
broken, is given by purple and green curves, respectively. Another two values,
γ = 0.1ωr(red) and γ = ωr(black), are shown to satisfy the ARP conditions
well. The other rubidium parameters used in the simulations are: νb = 0.035ωr,
κ = 160ωr, δ = 0 and U0 = 0.04ωr.

For an abrupt switch-on of the optical lattice the evolution of the average
atomic momentum in the laboratory frame is shown by the blue curve in Fig.2.4.
In this case, an atomic drift associated with a coherent directed transport of
the Bloch oscillating atoms [87] is observed. If a sudden switch-on is performed,
the atomic population is initially distributed over several momentum states, not
all of which participate in the Bloch oscillations. Consequently, the change in
average atomic momentum in the accelerated frame at each step is slightly less
than 2h̄k, which can be seen in Fig.2.5, and the upward force caused by the
momentum transfer does not fully compensate for gravity. As the result, the
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2.2. Bloch oscillations dynamics without cavity

center-of-mass momentum of the atomic cloud steadily increases in time. Thus,
it is demonstrated that in the absence of the ring cavity, an abrupt switch-on of
the optical potential leads to a sustained drift of the atomic momentum in the
laboratory frame.

On the other hand, instead of a sudden switch-on of the lattice with α0 =
const, it can be turned on in an adiabatic fashion via

α0 = α̃0

(
1− e−γt

)
, (2.18)

where α̃0 is a constant corresponding to a saturation value of the light field am-
plitude eventually achieved as time goes on, and γ is the rate at which the am-
plitude of the optical potential is increased. An important criteria for selection
of a proper value of γ is given by the fact that the raising time of the potential
τr = 1/γ should be much shorter than the first Bloch period τb (τr � τb), i.e.,
the optical lattice is assumed to be created already before the actual evolution of
the system starts. In other words, a typical value of the lattice amplitude rising
rate γ should be much larger than the Bloch oscillation frequency (γ � νb) in or-
der to provide an adiabatic switch-on of the optical potential. Indeed, if a value
smaller than the Bloch frequency is taken, for example, γ = 0.02ωr(purple) in
the performed simulations (see Fig.2.4 and Fig.2.5), the lattice is turned on so
slowly that it is actually not created by the time the first momentum transfer
occurs. Consequently, the matter wave diffuses quickly over various bands, and
the oscillations remain degraded. Thus, it is seen that the amplitude of the
lattice potential should not arise too slowly, otherwise the adiabaticity of the
process is no longer reliable. It is also not valid for a very fast switch-on of the
potential, which is demonstrated for γ = 10ωr(green) in Fig.2.4 and Fig.2.5.
The behavior of the system in this case is similar to an abrupt switching of the
lattice: the chosen value of the amplitude rate is so high that the saturation
is reached almost immediately, and the efficiency of the momentum transfer is
visibly reduced.

A suitable value of the amplitude rising rate γ should clearly belong to
a certain interval to secure the adiabaticity of the process. In practice, it is
relatively easy to realize an adiabatic switch-on of the lattice with respect to
the interband excitation. A typical time period of a few hundred microseconds is
generally used as a rising time of the optical potential. For the selected values of
γ = 0.1ωr(red) and γ = ωr(black) the ARP conditions (2.9) seem to be fulfilled
well. Consequently, the momentum transfer at each Bloch period is efficient
and no atomic drift is observed.

This section clearly demonstrates that the evolution of the system without
the cavity appears to be highly sensitive to the manner in which the optical
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Figure 2.5: Dynamics of the average atomic momentum in 2h̄k units in the
accelerated frame without the cavity as a function of scaled time νbt. The same
parameters as in Fig.2.4 are used.

potential containing the atoms is switched on. The reason for the observed
atomic drift is that any non-adiabatic process violates the first ARP assumption
32νb/ωr � (W0/ωr)

2. If the process is not perfectly adiabatic, the applied force
may cause a part of the matter wave to tunnel into the neighboring Bloch band
where it continues being accelerated. In this case, there is always a fraction of
the atomic population that remains in the lower states during the sequential
transitions between momentum states, and as a result the momentum transfer
at each step is rather less than 2h̄k, i.e., is incomplete. Thus, the selection
of the suitable parameters must be done carefully, since it is essential for the
observation of regular Bloch oscillations.
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2.2. Bloch oscillations dynamics without cavity

2.2.4 Momentum states population

This subsection is dedicated to a visual demonstration of the consecutive popula-
tion transfer between adjacent momentum states happening every Bloch period
τb. In order to confirm the fact that the way the optical potential is created
notably influences the behavior of the system, the time evolution of the popu-
lation of every momentum state involved in the dynamics for both sudden and
adiabatic switch-on of the lattice is studied. For these cases, the results of the
numerical simulations of Eqs.(2.7) and (2.8) with nmax = 15 and typical rubid-
ium parameters are provided in Fig.2.6(a) and Fig.2.6(b), respectively. To ease
the visual distinction between the population dynamics of each momentum state
|Cn|2, various colors are used. It should be noted that the atoms are prevented
to leak out of the system as seen also in Fig.2.6, where the total momentum
states population shown by the green line on the top of each picture is verified
to be equal to unity and remains unchanged during the evolution in both cases.

For the case of an abrupt switching of the potential, the atoms end up being
initially dispersed over several momentum states with the majority of the atoms
residing in the nth state. Fig.2.6(a) shows that the atoms from the states other
than n stay in those momentum states throughout the evolution and remain
excluded from the Bloch oscillations dynamics. As it is seen in Fig.2.6(a), an
atomic transition to the next negative momentum state happens every Bloch
period. However, only the atoms found in the state n at the beginning of
the evolution execute Bloch oscillations, the rest of the atomic population is
considered to be lost for the dynamics. Due to this issue, the efficiency of
the momentum transfers is reduced and the previously discussed steady atomic
drifts occur.

If the optical lattice is created in an adiabatic fashion, and all the atoms are
assumed to be located in a single momentum state initially, the atomic popu-
lation transfer taking place every τb is shown to be fully complete. Unlike the
case of a sudden rise of the lattice, all atoms now participate in the dynam-
ics. Fig.2.6(b) demonstrates that at each step all atomic matter is successfully
transferred to the next adjacent momentum state. No atomic drift is present in
this case, and the Bloch oscillations appear to be stable and regular.
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Figure 2.6: Evolution of the momentum states populations |Cn|2 with nmax =
15 in the absence of the cavity for a) abrupt switch-on of the lattice potential
with α0 = 20 and b) adiabatic switching with γ = 0.1ωr and α̃0 = 20. The
other chosen parameters are νb = 0.035ωr, κ = 160ωr, δ = 0 and U0 = 0.04ωr.
The population dynamics of each momentum state is given by a different color
to enable visual distinction between the curves.
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2.2. Bloch oscillations dynamics without cavity

2.2.5 Variable optical potential depth

In the previous subsections it has been shown that the way in which the lat-
tice potential is switched on significantly influences the dynamics of the system
without the cavity. An adiabatic switching of the lattice is required for detec-
tion of stable Bloch oscillations, since if the lattice is turned on adiabatically,
in this case only the non-excited momentum state is initially populated and all
the atoms undergo Bloch oscillations. However, even if all atoms reside initially
in a single momentum state, atomic drifts may occur.

This might happen, for instance, when the optical lattice is too shallow.
Such a situation is illustrated in Fig.2.7 showing the dynamics of the average
atomic momentum in 2h̄k units in both laboratory and accelerated frames for a
slightly reduced lattice potential depth of W0 = 1.6ωr. As it has already been
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Figure 2.7: Evolution of the average atomic momentum in 2h̄k units in the
laboratory (left) and accelerated (right) frames without the cavity for a reduced
lattice depth of W0 = 1.6ωr. The other parameters remain the same: νb =
0.035ωr, κ = 160ωr, δ = 0 and U0 = 0.04ωr. The adiabatic switch-on of the
optical potential via α0 = α̃0 (1− exp(−γt)) with α̃0 = 20 (dashed curves) is
compared to the case when the value of α̃0 = 10 is taken instead (solid curves).
Both values γ = 0.1ωr(red) and γ = ωr(black) fulfill the ARP conditions for
the lattice depth of W0 = 3.2ωr, whereas for a potential depth twice as small
the adiabaticity is broken, and a prominent atomic drift is observed.
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demonstrated, both values γ = 0.1ωr and γ = ωr of the amplitude rising rate
certainly fulfill the ARP conditions (2.9) for the lattice depth of W0 = 3.2ωr.
In Fig.2.7 the evolution of the system corresponding to this case for γ = 0.1ωr
and γ = ωr is given by dashed red and black curves, respectively, and regular
Bloch oscillations as well as full momentum transfers are detected. However,
if the depth of the optical potential is twice as small the previous value (solid
curves in Fig.2.7), the adiabaticity of the process is obviously destroyed, and a
prominent atomic drift is observed as the result of the non-efficient population
transitions between momentum states.

This particular case of a slightly reduced optical potential depth in the case
without the ring cavity points out once again that the selected parameters must
be appropriate to satisfy the ARP conditions, otherwise the atomic population
participating in the Bloch oscillations is reduced due to redistribution over sev-
eral momentum states, and an atomic drift is observed instead of synchronous
Bloch oscillations.

To sum up so far, the principal model of interest has been derived and
the system without the ring cavity has been investigated in detail. Since the
adiabatic sequential transfer between adjacent momentum states corresponds to
the Bloch oscillations in the lowest Bloch band, the ARP conditions are applied
to the system in order to obtain regular Bloch oscillations. The evolution of
the system is demonstrated to be strongly dependent on a chosen method of
the lattice switch-on. If a non-adiabatic switching of the optical potential is
performed, an atomic drift may occur since one of the ARP conditions, 32νbωr �
W 2

0 , is violated, and as a result the momentum transfer is inefficient. To prevent
the atoms from tunneling to the next higher Bloch band and avoid a drift of
the atomic momentum, the atomic motion is required to be perfectly adiabatic.
For an adiabatic switch-on of the lattice potential a certain set of parameters
can be selected to satisfy the ARP conditions; consequently, the momentum
transfer becomes fully successful. This adiabaticity can be easily broken by small
changes of the parameters. Therefore, a careful selection of the parameters is
absolutely necessary in the case without the cavity. The next chapters, however,
reveal multiple benefits of the presence of the ring cavity such as the interband
tunneling suppression and the Bloch oscillations stabilization via the enforced
adiabaticity.

Note that there are no collective effects in the absence of the cavity. Thus,
it is possible to observe stable Bloch oscillations for any reasonable amount of
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2.2. Bloch oscillations dynamics without cavity

atoms N contained in the system without the cavity, assuming that the other
parameters are close to fulfill the ARP conditions. However, as it will be seen
later, this is definitely not the case when the cavity is present. The fact that
the coupling parameter NU0/κ may become critically large with increasing N
plays an important role in the evolution of the system in the presence of the
cavity. As the coupling parameter is enhanced, the backscattering of the pump
light into the probe mode gets stronger. Here, the collective CARL effect may
impose its dynamics to the atoms, leading to a competition with the Bloch
oscillations dynamics. For a significantly large coupling parameter the Bloch
oscillations dynamics may be even overruled. A more detailed explanation of
this phenomenon is provided in Sec.4.3 where the presence of the cavity is taken
into consideration.
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Chapter 3

Mode-locking with ring
cavity

The situation changes considerably in the presence of a unidirectionally pumped
optical ring cavity. The system, as before, consists of ultracold atoms under-
going Bloch oscillations in a vertical optical potential under the action of the
gravitational force (see Fig.2.1). However, if the cavity is present, the reverse
cavity mode α becomes available, which obviously imposes an additional effect.
The atoms now not only exchange photons between the optical lattice laser
beams, but also collectively scatter light from the pumped cavity mode into
the counter-propagating one. The intracavity pump and probe fields form a
standing wave optical potential, and it is reasonable to expect the observable
signatures of the atomic Bloch oscillations when the standing wave created in-
side the cavity is commensurate with the externally imposed one, i.e., k = kl.
The photons emitted into the reverse cavity mode happen to be added to the
mode α0 of the external optical lattice. Even though in the regime of interest
the contribution of this scattered field to the optical lattice strength remains
negligibly small, it provides a feedback on the atomic motion, such that the
momentum transfer at each Bloch period τb becomes complete, and the Bloch
oscillations are stabilized. This effect can be interpreted as a mode-locking of
the Bloch oscillations induced by the cavity field. A detailed investigation of
this phenomenon is provided in the next sections. In particular, Sec.3.1 com-
pares the behavior of the system in the presence of the ring cavity with the
dynamics revealed in the case without the cavity, studied in the previous chap-
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ter, including the ARP approximation which describes the long-term dynamics
perfectly well and only fails to reproduce a few rapid oscillations at the very
beginning of the evolution. The feedback generated by the cavity is demon-
strated to provide a number of advantages among which are, for example, the
long-term persistence of the Bloch oscillations, even if the lattice potential is
turned on non-adiabatically, and the opportunity to monitor the atomic motion
in a non-destructive fashion via the light scattered into the probe mode of the
ring cavity, discussed in Sec.3.2.

3.1 Mode-locking mechanism

Since the ring cavity is now added to the system, the atoms scatter cooperatively
the pump photons into the reverse cavity mode, and the time evolution of the
cavity field must be taken into account. In this case, the numerical simulations
are performed letting the field α̃ evolve dynamically according to Eq.(2.8). The
evolution of the average atomic momentum shown in Fig.3.1 exhibits the first
example of a positive impact of the atom-field coupling in the cavity on the
dynamics of the system.

Fig.3.1 represents a comparison of the constant optical lattice solution with-
out the cavity shown by the dashed curves with the dynamics given by the case
when the contribution of the scattered cavity field is included (solid curves),
obtained by solving Eqs.(2.7) and (2.8) with the parameters N = 2 · 104,
νb = 0.035ωr, κ = 160ωr, δ = 0 and U0 = 0.04ωr. First, both sudden
switch-on of the optical lattice with α0 = 20 (blue) and adiabatic switching
via α0 = α̃0(1− exp(−γt)) with α̃0 = 20 and γ = 0.1ωr (red) are considered in
the laboratory (left) and accelerated (right) frames in Fig.3.1(a). Then, very fast
(green) and very slow (purple) lattice switchings are examined with γ = 10ωr
and γ = 0.02ωr, respectively, and the results are presented in Fig.3.1(b).

From the previous chapter it is known that if the contribution from the cav-
ity field is neglected, after the optical potential is turned on non-adiabatically,
the population transfer between adjacent momentum states is not complete,
and as a result the change of the average atomic momentum at each step is
slightly less than 2h̄k. Consequently, the Bloch oscillations are not preserved,
and the average momentum drifts steadily after each period, which is clearly
demonstrated by the dashed blue curves in Fig.3.1(a). Unlike the case without
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Figure 3.1: Average atomic momentum in the laboratory (left column) and ac-
celerated (right column) frames in units of 2h̄k as a function of normalized time
νbt for an abrupt (blue), adiabatic (red) with γ = 0.1ωr, very slow (purple) with
γ = 0.02ωr and very fast (green) with γ = 10ωr switch-on of the optical poten-
tial. The dashed curves correspond to a constant optical lattice, i.e., the case
without the cavity, while the solid ones represent the case when the radiation
field evolves according to Eq.(2.8) in the presence of the cavity. The simulations
are performed for N = 2 · 104, νb = 0.035ωr, κ = 160ωr, δ = 0, U0 = 0.04ωr,
and α0 = 20 for a sudden switch-on of the lattice and α̃0 = 20 for an adiabatic
one.
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the cavity, the solid blue curves show that after a transient of approximately
three Bloch periods the population is efficiently restored into the first Brillouin
zone in the presence of the cavity, even if an abrupt switch-on of the lattice
potential is performed. Thus, the momentum drift is obviously canceled, and
the Bloch oscillations persist for long times. A similar behavior of the system
apart from the transient is shown by the dashed red curves in Fig.3.1(a) for the
case when an adiabatic switching of the lattice takes place in the absence of
the cavity, for which the ARP conditions (2.9) are fully satisfied. This proves
that if the lattice is turned on abruptly, the feedback provided by the cavity
field onto the atomic motion also tends to assist the adiabatic rapid passages
between momentum states helping to complete the momentum transfer each
Bloch period τb. Fig.3.1(b) manifests that the same effect occurs also when the
optical lattice is turned on very fast or very slowly in the presence of the cavity.
While both these ways to perform the lattice switching without the cavity lead
to the violation of the ARP conditions and unsuccessful momentum transfer,
the cavity is proven to bring back the stability of the Bloch oscillations lasting
for indefinite times.

The reason of the observed cavity-induced stabilization is the positive feed-
back of the cavity field on the atomic evolution. The cavity seems to force the
atoms to execute synchronous Bloch oscillations since its presence is shown to
contribute to the transitions between adjacent momentum states, resulting in a
fully efficient momentum transfer. The mechanism of stabilization is organized
in such a way that the Bloch oscillations become persistent through a process
analogous to the mode-locking in Q-switched lasers [88–90], representing the
operation regime of mode-locked lasers with fluctuations in the pulse energy.
As it will be seen later in the section, every Bloch oscillation is accompanied by
a detectable burst of light in the reverse cavity mode. Thus, the dynamics of
the studied system can be associated with a regular pulse train similar to the
one emitted by a mode-locked laser together with a low-level background noise.
For this reason, the process behind the displayed Bloch oscillations stabilization
is termed mode-locking mechanism in this work.
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3.1. Mode-locking mechanism

3.1.1 Comparison with ARP approximation

As it is demonstrated in Sec.2.2.2, if the dynamics involves only two adjacent
momentum states, Eqs.(2.7) and (2.8) can be substituted by the set of Maxwell-
Bloch equations (2.10)-(2.12) for the populations difference W , interference term
S and time-dependent detuning Λn, admitting the constant of motion 4|S|2 +
W 2 = 1. According to the ARP approximation

W =
Λn√

4U2
0α

2
0 + Λ2

n

, S = −i U0α0√
4U2

0α
2
0 + Λ2

n

. (3.1)

From these, one can express the average atomic momentum in 2h̄k units in the
accelerated frame as

〈p〉 = n+
(W − 1)

2
. (3.2)

The results obtained using the ARP approximation correspond to the dashed
red curves in Fig.3.2, where the average atomic momentum is given in both the
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Figure 3.2: Comparison of the average atomic momentum given in units of 2h̄k
in the laboratory (left) and accelerated (right) frames, obtained from the ARP
solution (dashed red) of Eq.(3.1) and numerical solution (solid blue) of Eqs.(2.7)
and (2.8). The used parameters are N = 2 ·104, νb = 0.035ωr, κ = 160ωr, δ = 0
and U0 = 0.04ωr.
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Figure 3.3: Constant of motion C = W 2 + 4|S|2 as the result of the numerical
solution of Eqs.(2.7) and (2.8). The same parameters as in Fig.3.2 are used.

laboratory and accelerated frames in 2h̄k units, while the results of the numerical
solution of Eqs.(2.7) and (2.8) are shown in blue. It is seen that ARP describes
the behavior of the system well after a transient of a few Bloch periods, and it
allows to interpret Bloch oscillations as a succession of transitions between two
adjacent momentum states [77]. Fig.3.3 representing the constant of motion
C = W 2 + 4|S|2 calculated numerically from the exact solution of Eqs.(2.7)
and (2.8) reveals an insignificant deviation from unity expected in the made
approximation. Thus, the results obtained from the ARP solution are in good
agreement with the numeral simulations, which confirms that ARP is sufficient
to characterize the long-term evolution of the system. However, a more complete
description is required to explain the wild transient at the very beginning of the
evolution. Since the mode-locking mechanism actually involves more than just
two momentum states at each transition, the presence of which is shown to be
responsible for the transient in Appendix B, the full description turns out to be
very challenging. For this reason, a more precise study of the Bloch oscillations
in this work has to rely on the numerical integration of Eqs.(2.7) and (2.8).
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3.1. Mode-locking mechanism

3.1.2 Population of momentum states

Sec.2.2 of the previous chapter considers how the turning on of the optical lat-
tice affects the behavior of the system in the absence of the ring cavity. Only if
an adiabatic switch-on is performed, the displayed evolution reveals no atomic
momentum drifts because the ARP conditions are completely satisfied and all
the atoms participate in the Bloch oscillations dynamics. In contrast to the
case without the cavity, it does not matter if the lattice potential is switched
on adiabatically or non-adiabatically in the presence of the cavity, since the
mode-locking mechanism secures the stabilization of the Bloch oscillations via
assistance of sequential adiabatic rapid passages between momentum states.
This can also be observed in the time evolution of the momentum states pop-
ulations |Cn|2 showing each state’s dynamics by a different color to distinguish
the separate curves. Comparing Fig.2.6(a) produced for an abrupt switch-on of
the optical lattice without the cavity with Fig.3.4 representing the case when
the cavity is added to the system and the same non-adiabatic way of the lattice
switching, one can realize that the cavity-induced feedback makes all the atoms
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Figure 3.4: Time evolution of the momentum states populations |Cn|2 in the
case of an abrupt switch-on of the optical lattice in the presence of the cavity.
The parameters used to perform the simulations are N = 2 · 104, νb = 0.035ωr,
κ = 160ωr, δ = 0 and U0 = 0.04ωr. To be compared with Fig.2.6(a) realized for
an abrupt lattice switching without the cavity.
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Figure 3.5: Momentum states population diagram for the case of an abrupt
switch-on of the optical potential a) without the cavity and b) with the cav-
ity. Diagram a) is an alternative representation of Fig.2.6(a), while diagram b)
corresponds to Fig.3.4. The same parameters as in Fig.3.4 are used.

undergo the synchronous Bloch oscillations despite the initially imposed non-
adiabaticity. These dynamics are alternatively represented in Fig.3.5(a) and
(b), respectively, which may help understanding of the role of the ring cavity
even better. Each square in Fig.3.5 corresponds to a momentum state n whose
population is shown by the color diagram. The difference between the two cases
is evident. In the absence of the ring cavity a fraction of the atoms is lost from
the Bloch oscillation dynamics since the atoms remain in the starting momen-
tum state given by the brown line in Fig.3.5(a), and accordingly the momentum
transfer each Bloch period cannot be complete. In the case with the cavity, the
feedback provided by the cavity field on the atoms restores the effective dynam-
ics by forcing full 2h̄k transitions between the momentum states. Thus, again
thanks to the mode-locking scheme with the ring cavity, the Bloch oscillations
remain stable for long times.
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3.1.3 Reduced potential depth

In Sec.2.2.5 it is demonstrated that even if the confining lattice potential is
turned on in an adiabatic fashion, a drift of the cloud’s center-of-mass momen-
tum may still occur. The fact that only the p = 0 momentum state is initially
populated may not guarantee that all the atoms undergo the Bloch oscillations.
If, for example, the lattice potential is too shallow (i.e., the chirping rate is
too fast), the matter wave in the absence of the ring cavity diffuses over var-
ious momentum states, which eventually degrades the Bloch oscillations (see
Fig.2.7). Here, a lower lattice potential depth of W0 = 1.6ωr is taken as an
example to compare the dynamics of the system with and without the cavity.
The optical lattice is switched on adiabatically via α0 = α̃0(1− exp(−γt)) with
α̃0 = 10 and two values of the amplitude rising rate γ = 0.1ωr (red) and γ = ωr
(black). The time evolution of the average atomic momentum in the laboratory
(< p >lab=< p > +νbt) and accelerated frames is shown in Fig.3.6 in the pres-
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Figure 3.6: Comparison of the average atomic momentum in the laboratory
(left) and accelerated (right) frames for the cases with (solid curves) and without
(dashed curves) the cavity for a reduced optical potential depth of W0 = 1.6ωr.
The lattice is realized in an adiabatic fashion with α̃0 = 10 for γ = 0.1ωr(red)
and γ = ωr(black). The rest of the parameters used to perform the simulations
are N = 2 · 104, νb = 0.035ωr, κ = 160ωr, δ = 0 and U0 = 0.04ωr.
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ence of the cavity (solid curves) and without the cavity (dashed curves). Unlike,
the latter case with no cavity, where an immediate drift in the average atomic
momentum for both values of γ is observed despite the adiabatic switch-on of
the lattice potential, the cavity brings back the stability of the system even with
the reduced lattice potential depth. This is another advantage of the feedback
provided by the cavity which assists full momentum transfers between neighbor-
ing momentum states and stabilizes the Bloch oscillations via the mode-locking
mechanism, whereas the system without the cavity fails to do so.

3.2 Non-destructive monitoring

The mode-locking mechanism in the unidirectionally pumped optical ring cavity
can be shown to provide direct signatures of the atomic Bloch oscillations in the
defined parameter regime. In particular, the radiation field reaches a stationary
regime characterized by periodic bursts of light at each Bloch oscillation. Even
though it takes slightly more time for the Bloch oscillations to self-synchronize,
if the confining lattice potential is turned on abruptly rather than adiabatically,
the stationary regime is achieved within the first few Bloch periods. This can
be seen in Fig.3.7(a), where the intracavity photon number evolution |α|2 of the
probe mode α is given for the cases of adiabatic (solid red) and sudden (dashed
blue) switch-on of the optical lattice. The phase φ of the field α = α̃ − α0 of
the probe mode, shown in Fig.3.7(b), also stabilizes after the transients to a
constant value only slightly perturbed at each Bloch oscillation. The average
number of photons in the cavity field throughout the evolution is |α|2 ' 5. To
estimate the count rate on an external photodetector the intracavity power is
introduced as Pcav = h̄ω|α|2δfsr, where δfsr = κF is the free spectral range
and F is the cavity finesse. It is linked to the power leaking through the input
coupling mirror via Pout = TPcav, where T = κ/δfsr. This gives a photon flux
rate of Pout/h̄ω = κ|α|2. For the chosen cavity decay rate κ = 160ωr and the
Bloch oscillation frequency νb = 0.035ωr, the expected photon flux is ∼ 4600
s−1 outside the cavity or approximately 35 photons per Bloch oscillation, which
can be easily detected through a photon counter. Thus, after a transient of a
few Bloch periods, the radiation field develops a constant phase and becomes
periodic with perfectly detectable signatures of the Bloch oscillations, thereby
providing a reliable and non-destructive monitor of the atomic motion. Such
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Figure 3.7: a) Average number of photons |α|2 in the radiation field and b)
phase φ of the cavity mode α as functions of scaled time νbt for a sudden
(dashed blue) and adiabatic (solid red) switch-on of the lattice potential in the
presence of the cavity. The used parameters are N = 2 · 104, νb = 0.035ωr,
κ = 160ωr, δ = 0, U0 = 0.04ωr. The lattice is turned on either abruptly with
α0 = 20 or adiabatically with α̃0 = 20 and γ = 0.1ωr.

regime may be very useful for experimental studies since the detection of the
signal coming out of the cavity seems to be very convenient. Furthermore,
in contrast to the previous proposals on continuous monitoring of the Bloch
oscillations [60, 69], the studied scheme does not require heterodyne detection.
Generally, in heterodyne detection, a signal of interest at some frequency is non-
linearly mixed with a reference signal that is set at a close-by frequency. The
desired outcome is the frequency difference which carries the information on
the amplitude, phase and frequency modulation of the original higher frequency
signal, but is oscillating at a lower and more easily processed carrier frequency.
However, the considered model allows to avoid the non-linear mixing, since the
light pulses are emitted directly into the reverse cavity mode, from where they
are detected straight away.
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To summarize, the presence of the optical ring cavity in the considered con-
figuration is certainly beneficial. While an adiabatic switch-on of the confining
lattice potential is essentially important in the initial phase in the case with-
out the cavity, the system with the cavity does not require any specific method
for the lattice to be turned on, i.e., both adiabatic and non-adiabatic ways are
acceptable. The ring cavity induces a positive feedback on the atomic motion
by efficiently restoring the whole atomic population in the first Brillouin zone
within a few Bloch periods and preventing the atomic momentum drifts. Due to
the cavity-induced feedback the atomic Bloch oscillations become synchronized
through the mode-locking mechanism enforcing adiabaticity and remain stable
even in the presence of adverse effects considered in Chapter 5. Besides, the
periodic bursts of light in the reverse cavity mode provide reliable signatures
of the Bloch oscillations without perturbing their periodicity, which may serve
as an improvement of current systems that aim to measure gravity with high
precision through Bloch oscillations of ultracold atoms.

Moreover, the regime where the radiation field evolves with time can be con-
sidered as collective since the revealed dynamics strongly depends on the total
number of atoms N present in the system, but the synchronization due to the
mode-locking is still the key mechanism. However, it should be noted that if the
number of atoms contained in the system is increased by a fairly large amount
in the presence of the cavity, the system exhibits a dynamics different from the
one described in this chapter. If the coupling parameter NU0/κ happens to
be exceedingly large, resulting in a much stronger backscattering of the pump
light into the probe mode, the collective CARL effect interferes the regular
Bloch oscillations dynamics and may even become dominant. The next chapter
shows that such phenomenon has a negative impact on the system’s evolution
and the non-destructive monitoring of the atomic motion is no longer reliable
since the Bloch oscillations are distorted. Nevertheless, if the parameters are
selected correctly, the two dynamics collaborate in order to establish the regime
of persistent for infinite times Bloch oscillations.
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Chapter 4

Transition to synchronized
regime of Bloch oscillations

The effect of collective atomic recoil lasing (CARL) plays a significant role in
the studied model. Therefore, this whole chapter is dedicated to the detailed
description of the CARL operating principles and emphasizes its most crucial
characteristic features as well as considering a possible competition between the
CARL dynamics and the Bloch oscillations in the given configuration. Origi-
nally proposed as a new source of tunable coherent light [70,91,92], the CARL
mechanism is a hybrid between a free electron laser (FEL) [93,94] and a tradi-
tional laser with physical properties common to both. The CARL effect arises in
an optical ring cavity filled with cold atoms interacting with an intense far off-
resonant pump laser and a counter-propagating probe field with respect to the
pump. The effect manifests itself as a collective phenomenon accompanied by
atomic bunching and exponential enhancement of the emitted radiation. What
CARL system has in common with an original laser is the active medium with
no population inversion, which is characterized by internal degrees of freedom
that are responsible for the amplification process. As in the FEL, instead, the
light enhancement is the result of cooperative scattering from the density grat-
ing structure generated within the active medium, and it comes at the expense
of the momentum partially transformed into the radiation similarly to the case
of individual electrons in the FEL. The classical FEL-CARL model is revised
in Sec.4.1, followed by the quantum description of the CARL dynamical evolu-
tion within the framework of the semiclassical approximation as an extension
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Chapter 4. Transition to synchronized regime of Bloch oscillations

to the ultracold atoms regime [95–98] revealed in Sec.4.2. The work presented
in Sec.4.3 is based on the paper [M. Samoylova et al., Laser Phys. Lett. 11,
126005 (2014)], where the regimes in which either CARL or Bloch oscillations
dynamics dominate over one another are investigated as well as the intermediate
case. It turns out that, even though the CARL effect may strongly modify the
Bloch oscillation frequency, the two dynamics may collaborate and synchronize
giving rise to regular and stable Bloch oscillations.

4.1 Collective atomic recoil lasing (CARL)

While interacting with a coherent laser light, atoms may experience both scat-
tering and dipole forces. The scattering force originates from absorption of a
photon from the laser beam and its spontaneous emission in any direction. Since
this force pushes an atom forward in the direction of the beam propagation, in
the case of two counter-propagating laser beams the applied forces will tend to
cancel each other in average, assuming that fluctuations in both absorption and
spontaneous emission processes are disregarded. There is another type of force
called dipole force that is schematically illustrated in Fig.4.1 at the example of a
macroscopic particle approximated by a dielectric sphere deflecting the focused
laser beam. As a result, the direction of the light momentum changes, which
induces the reaction dipole force acting on the particle itself. If the particle is
away from the beam focus, this force pulls the particle towards the region of
high intensity, i.e. back to the focus. Macroscopically, the dipole force arises
from the refraction of the incident light by the particle that is considered as
a dispersive medium with the refractive index higher than the one of the sur-
rounding area. However, from our microscopic point of view, the origin of the
dipole force relies in the existence of a nonzero atomic polarizability.

During the CARL process a cold atomic cloud in a ring cavity interacts
with a constant intense pump laser beam of frequency ωp and Rabi frequency
Ωp and a weak probe field, fed by the back-scattered pump photons, of fre-
quency ωs and Rabi frequency Ωs = |Ωs| exp(iφ) variable in time, where φ is
the phase difference between the two light fields. If the pump detuning from the
atomic resonance is much larger than the atomic natural linewidth (∆ � Γ),
the scattering force can be neglected and the dipole force is approximated by

Fdip ≈
h̄k

2∆
Ωp|Ωs| sin (2kx+ (ωp − ωs)t+ φ) . (4.1)
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Figure 4.1: Schematic demonstration of the dipole force. The macroscopic
particle off the beam focus is pulled back into it by the dipole force.

The phase θj = 2kxj and momentum pj = mυj are defined for each atom
j = 1, 2, ..., N to derive the following atomic equations of motion:

dθj
dt

=
2k

m
pj , (4.2)

dpj
dt

=
h̄k

2∆
Ωp|Ωs| sin (θj + δt+ φ) , (4.3)

where for simplicity the atoms driven by the laser pump are assumed to radiate
at the same frequency (ωp ≈ ωs), therefore, the corresponding wave numbers kp
and ks of the pump and probe fields are nearly equal too, i.e., kp ≈ ks ≡ k.

The third equation completing the classical CARL model is given by the
complex scattered field written in the mean-field approximation under the as-
sumption that the pump laser beam is very strong (Ωp � Ωs):

dΩs
dt
≈ −iΩp

2∆
ω2
pl

〈
e−i(θ+δt)

〉
− κΩs, (4.4)

where ωpl =
√
e2ne/ε0me is the plasma frequency (e is the electric charge, ne is

the plasma density, me is the electron mass, ε0 is the permittivity of free space),
δ = ωp − ωs is the pump-probe detuning and κ is the cavity damping. In this
last equation the average is taken over all N atoms of the ensemble, so that

〈
e−iθ

〉
=

∣∣∣∣∣∣ 1

N

N∑
j=1

e−iθj

∣∣∣∣∣∣ ≡ b, (4.5)
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where b is the coherence factor of emission called bunching parameter. At
the beginning of the evolution the phases θj of the uniform atomic cloud are
randomly distributed and initially there is no macroscopic field source, since∑N
j=1 exp(−iθj(0)) = 0. However, when the atomic phases become correlated

during the CARL dynamics, the bunching parameter approaches unity, so that
the atomic cloud spontaneously creates a spatial structure and due to the expo-
nential instability the macroscopic field is immensely enhanced upon the emis-
sion process.

Eqs.(4.2)-(4.4), representing the simplified classical CARL model, can be
written in dimensionless units following the universal scaling used in the theory
of FEL [93]. The new collective CARL parameter ρ is defined as

ρ =
1

2

(
Ωp
2∆

)2/3(
ω

4ωr

)2/3

, (4.6)

where ωr = h̄k2/2m is the single photon recoil frequency. Thus, the other
parameters are redefined as follows: τ = 8ωrρt is the scaled time, the momentum
variable is

p̃j =
pj

2h̄kρ
=

kυj
4ωrρ

, (4.7)

the pump-probe detuning and the cavity decay width are δ̃ = δ/(8ωrρ) and
κ̃ = κ/(8ωrρ), respectively, C1 = Ωp/(32ωr∆) and C2 = Ωsω

2/(16ωr∆) with
C1C2 = ρ3. Eqs.(4.2)-(4.4) then take the following form:

dθj
dτ

= p̃j , (4.8)

dp̃j
dτ

= 2
C1

ρ2
|Ωs| sin

(
θj + δ̃τ + φ

)
, (4.9)

dΩs
dτ

= −iC2

ρ

〈
e−i(θ+δ̃τ)

〉
− κ̃Ωs. (4.10)

Finally, using the subsequent definitions

iC1Ωs
ρ2

≡ Ae−iδ̃τ , iρΩs
C2
≡ Aeiδ̃τ (4.11)

in Eqs.(4.9) and (4.10), respectively, the coefficients can be eliminated:

dθj
dτ

= p̃j , (4.12)
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4.1. Collective atomic recoil lasing (CARL)

dp̃j
dτ

= −
(
Aeiθj +A∗e−iθj

)
, (4.13)

dA

dτ
=

〈
e−iθ

〉
+ (iδ̃ − κ̃)A. (4.14)

This self-consistent set of equations describing the collective CARL effect classi-
cally is formally identical to the traditional FEL model with the only difference
in the definitions of the variables, which clearly demonstrates that CARL and
FEL share common physical features [70]. The CARL phenomenon is basically
the atomic realization of FEL that works instead with relativistic electrons and
intense magnetic field, while the analogy with the original laser is only qualita-
tive.

The typical signature of the CARL phenomenon is the development of the
exponential growth of both the probe field intensity |A|2 and the atomic bunch-
ing b for sufficiently long interaction times (τ � 1), and Eqs.(4.12)-(4.14) are
able to predict it. To demonstrate this effect, the exact CARL equations are
solved numerically, for example, with N = 105 atoms for the resonance case
(δ̃ = 0) in the good-cavity limit (κ̃� 1), for which the maximum amplification
is observed. As can be seen in Fig.4.2, the maximum probe field intensity is
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Figure 4.2: a) The intensity of the probe field |A|2 and b) the atomic bunching
parameter b as functions of scaled time τ as the result of the numerical simulation
of Eqs.(4.12)-(4.14) with N = 105 atoms in the good-cavity limit κ̃ � 1 on
resonance δ̃ = 0.
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1.4, while the maximum bunching reached is about 0.8, after which both the
scattered field and the atomic bunching display undamped nonlinear oscillations
revealing the unstable behavior.

The CARL mechanism can be described qualitatively as follows. The cold
atomic cloud exposed to a strong pump laser serves as an active medium in
an optical ring cavity that supports a counter-propagating probe field. Due to
either the spontaneous light emission or the density fluctuations in the active
medium which backscatters the pump photons, the probe field is initiated and
interferes with the pump. The resulting field forms a periodic optical poten-
tial, so that the uniformly distributed atoms acquire a density modulation (see
Fig.4.3). The back-scattered radiation amplifies the magnitude of the stand-
ing wave and generates more bunching, which in turn gives rise to the further
stimulated backscattering etc. This collective feedback mechanism transforms
the initially stable system of the atomic cloud driven by the strong pump beam
in the presence of the ring cavity into the unstable one where the probe field
intensity and the atomic bunching are characterized by the exponential growth.

Figure 4.3: The effect of bunching: due to the superposition of the pump and
probe fields the uniformly distributed atoms (above) experience the density
grating (below).
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4.1. Collective atomic recoil lasing (CARL)

The first attempts to experimentally observe the striking features of the
CARL dynamics were realized with various hot atomic vapors [99–101]. In
these experiments, the detected recoil induced probe gain turned out to have
the CARL expected characteristics. The macroscopic polarization created by
the incident pump laser in the active medium due to the internal structure of the
atoms was considered as the source of the probe field. However, the coherent
scattering from the induced polarization grating is not the only possible way
for the probe gain to arise. Both the atomic bunching and the probe gain may
have other sources not related to the atomic recoil [102]. For example, the gain
observed in the reverse field can emerge spontaneously from fluctuations [92].
Moreover, these experiments do not take into consideration the probe feedback
mechanism that is absolutely necessary to observe the CARL instabilities on the
long time scale. Also, the long-term dynamics yields the inclusion of dissipation
to the CARL equations due to the effect of atomic collisions [103–106].

As it was foreseen [107], a cold atomic cloud is a better environment for the
CARL effect to emerge more clearly. To observe the CARL action, the used
lasers are preferred to be detuned far from the atomic resonance, so that in this
regime the atomic polarization grating effects are avoided. It is also desirable
not to seed the probe to emphasize the role of the exponential gain responsible
for the atomic self-bunching. Then, the observation of a probe beam is a distinct
indication for the CARL effect.

The first nonambiguous experimental proof of the CARL phenomenon was
realized in a system of non-interacting 85Rb cold atoms [74, 108]. In this ex-
periment, a unidirectionally pumped high-finesse optical ring cavity served as
a dipole trap for the atomic cloud. Based on the experimental observations, it
was deduced that the reverse field grew due to the recoil effect even with no seed
probe field, which constituted the evidence for the atomic self-bunching. The
backaction of the atomic motion on the light fields in such configuration can be
observed directly as a frequency shift between the pump and reverse modes. In
the experiment, this frequency shift was provided by a beat signal between the
pump and probe beams, which was recorded using the light leaking out the cav-
ity through one of its mirrors. Since all atoms interacted with the same pump
laser, the net frequency shift could only arise if the atoms exhibited collective
behavior. Moreover, the increasing in time detuning between the pump and
probe led to a displacement of the standing wave and its acceleration by the
atoms. The atoms in turn were dragged by the moving standing wave and thus
experienced a constant accelerating light force coming from the light scattering
process into the reverse mode accompanied by the photonic momentum transfer.
These first reliable observations of the CARL feedback mechanism gave rise to
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other experiments with CARL as the key effect, for example, [71, 72, 109–112],
and further theoretical investigation of the phenomenon [113–120].

The CARL process also turns out to have a common root with superra-
diant Rayleigh scattering (SRyS), since they both share the same gain mech-
anism [121]. Several experiments have been dedicated to the observation of
this close analogy [71, 110]. Generally, in SRyS experiments [122–125] a Bose-
Einstein condensed atomic cloud of ellipsoidal shape is exposed to a short pump
laser pulse moderately detuned from the atomic resonance. The atoms scatter
the pump light into the long axis of the condensate, and simultaneously a mat-
ter wave grating is formed because of the photonic momentum transfer. While
SRyS usually requires temperatures lower than 1 µK and can be hardly observed
with thermal clouds [126] due to fast decoherence of the system, the CARL phe-
nomenon is seen with several 100 µK atoms [74]. Despite different experimental
circumstances and parameter regimes, both SRyS and CARL became accessible
in a single experiment [71] by operating the ring cavity at either low or high
finesse. This experiment also represented the first realization of a BEC in a
macroscopic optical cavity. It was demonstrated that SRyS, as the low-finesse
regime of CARL, is also possible at a high temperature, and the presence of a
high-finesse ring cavity preserves the system’s coherence against diffusion in the
momentum space. The detailed analysis of the CARL behavior as a function of
temperature from 1 µK to several tens of µK with N = 106 atoms reveals that
the effect is not observable at 40 µK, whereas CARL was realized with N = 107

atoms as hot as several 100 µK in the former experiments. With increasing
temperature, the atomic momentum distribution becomes spread, which leads
to a reduced effective atom number. Thus, the reason lies in the difference of
the number of atoms N participating in the CARL dynamics. The fact that the
CARL effect can be observed at temperatures far above 1 µK proves that the
gain process linking SRyS and CARL is not based on the quantum state of the
atoms, but on their cooperative behavior [127].
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4.2. CARL-BEC model

4.2 CARL-BEC model

In the case of an ultracold atomic cloud (BEC) with the temperature below the
recoil limit Trec = h̄2k2/2mkB , where kB is the Boltzmann constant, the atoms
behave as quantum waves instead of classical particles. Thus, in this case the
atomic motion in the CARL process can no longer be described by the classical
equations and must be quantized. In the following description the semiclassi-
cal model is adopted, which treats the atoms as quantum particles, while the
radiation field remains classical. With the newly defined atomic momentum
variable

pθj =
pj

2h̄k
= ρp̃j (4.15)

Eqs.(4.12)-(4.14) become:

dθj
dτ

=
pθj
ρ
, (4.16)

dpθj
dτ

= −ρ
(
Aeiθj +A∗e−iθj

)
, (4.17)

dA

dτ
=

1

N

N∑
j=1

e−iθj + (iδ̃ − κ̃)A. (4.18)

Eqs.(4.16) and (4.17) can be easily derived from the Hamiltonian of the system

H =

N∑
j=1

[
p2θj
2ρ
− iρ

(
Aeiθj −A∗e−iθj

)]
=

N∑
j=1

Hj (4.19)

using the canonical equations

dθj
dτ

=
∂H

pθj
,

dpθj
dτ

= −∂H
∂θj

. (4.20)

To be able to describe the quantum motion of the atoms, the atomic phase θj
and momentum pθj must be considered as quantum canonical operators with the
commutation relation [θj , pθj′ ] = iδjj′. Note that the N atoms are independent
in the periodic potential depending on the self-consistent probe field A that is
assumed to be classical. Therefore, instead of solving N Heisenberg equations
for the time-dependent functions θj(τ) and pθj (τ), the Schrödinger equation for
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the atomic wave function Ψ(θ, τ), with the normalization condition∫ 2π

0

|Ψ(θ, τ)|2 = 1, (4.21)

should be considered. Since pθ → −i∂/∂θ, the Schrödinger equation takes the
following form:

i
∂Ψ(θ, τ)

∂τ
= H1Ψ(θ, τ) = − 1

2ρ

∂2Ψ

∂θ2
− iρ

(
Aeiθj −A∗e−iθj

)
Ψ, (4.22)

whereH1 is the single-particle Hamiltonian. The equation equivalent to Eq.(4.14)
for the radiation field A in the semiclassical model can be obtained replacing
the sum over all atoms in the bunching parameter (4.5) by the ensemble average∫
|Ψ|2 exp(−iθ)dθ, where |Ψ|2 is interpreted as the probability density. In this

way, Eq.(4.18) becomes:

dA

dτ
=

∫ 2π

0

|Ψ(θ, τ)|2 e−iθdθ + (iδ̃ − κ̃)A. (4.23)

Eqs.(4.22) and (4.23) represent the simplest quantum model describing semi-
classically the behavior of an ultracold atomic cloud in the CARL dynamics.

Since the density of the atomic cloud is assumed to be uniform, the homoge-
neous atomic wave function Ψ with periodicity θ can be expanded into Fourier
series according to

Ψ(θ, τ) =
1√
2π

+∞∑
m=−∞

Cm(τ)eimθ, (4.24)

where |Cm(τ)|2 is the probability of finding the atoms in the momentum state m.
While backscattering the photons from the pump beam into the reverse mode,
the atoms change their momentum only by discrete steps of 2h̄k and move to the
adjacent momentum states. The potential V (θ) = −iρ (A exp(iθ)−A∗ exp(−iθ))
is actually responsible for the transition from the mth momentum state to the
state m± 1. In fact,

V (θ)Ψ(θ) = −iρ

(
A√
2π

∑
m

Cme
i(m+1)θ − A∗√

2π

∑
m

Cme
i(m−1)θ

)
(4.25)

or, equivalently, in the Dirac notation with |Ψ〉 =
∑
m Cm|m〉

V (θ)|Ψ(θ)〉 = −iρ

(
A
∑
m

Cm|m+ 1〉 −A∗
∑
m

Cm|m− 1〉

)
. (4.26)
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Since 〈n|m〉 = δnm, then 〈n|V |Ψ〉 = −iρ (ACn−1 −A∗Cn+1). Hence, substitut-
ing |Ψ〉 =

∑
m Cm|m〉 into Eqs.(4.22) and (4.23) and projecting to the state |n〉,

the equations take the following form:

dCn
dτ

= −in
2

2ρ
Cn + ρ(A∗Cn+1 −ACn−1), (4.27)

dA

dτ
=

+∞∑
n=−∞

C∗n−1Cn + (iδ̃ − κ̃)A, (4.28)

and it is seen that the effect of bunching occurs when the neighboring momentum
states overlap since the bunching parameter becomes defined as

b =

∫ 2π

0

|Ψ|2e−iθdθ =
∑
m,n

C∗mCn

∫ 2π

0

e−i(n−m−1)θdθ =

=
∑
m,n

C∗mCnδn,m+1 =
∑
n

C∗n−1Cn. (4.29)

The obtained Eqs.(4.27) and (4.28) is a generalization of the CARL-BEC model
[75,76] for the case of infinite momentum states. One can easily employ this set
of equations to derive Eqs.(2.7) and (2.8) describing the studied model, which
first make an appearance in Chapter 2.
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4.3 CARL dynamics vs Bloch oscillations

In this section, the CARL dynamics of an ultracold atomic cloud is analyzed in
close relation to the examined model described in Chapter 2. The atoms of the
condensate placed in a unidirectionally laser-pumped ring cavity in the presence
of an externally imposed one-dimensional optical lattice aligned along the cavity
axis are additionally exposed to a constant force accelerating the atoms along
the same axis. In this particular work, the system is subject to the gravitational
force (see Fig.2.1), although the model presented originally in [65] is effective for
any constant external force. While gravity incites the atoms to undergo Bloch
oscillations in the imposed lattice, the CARL mechanism coherently scatters
the pump light into the reverse mode in a self-amplified way accompanied by an
atomic redistribution in a self-determined optical lattice that competes with the
external one. In the following, the interplay between the CARL dynamics and
the Bloch oscillations is illustrated by numerical simulations, and the way the
CARL mechanism may operate to stabilize and monitor the Bloch oscillations
of the ultracold atoms is discussed.

Using the generalized BEC-CARL model presented in the previous section,
one can derive Eqs.(2.7) and (2.8) describing the system under investigation.
Under the assumptions that the cavity decay is much faster than the Bloch or
CARL dynamics, so that κα̃ � dα̃/dt, and the detuning is small on the scale
of the cavity linewidth, i.e., δ � κ, the cavity can be adiabatically eliminated.
This results in the light field being slaved to the collective atomic motion, and
the equations of motion in this regime take the following form:

dCn
dt

= −4iωr(n+ νbt)
2Cn + U0 (α̃∗Cn+1 − α̃Cn−1) , (4.30)

α̃ ≈ α0 +
NU0

κ

∑
n

C∗n−1Cn. (4.31)

Indeed, the last term in Eq.(4.31) represents the backaction of the atoms onto
the cavity field, which defines the dynamics of the light in the reverse mode.
The type of dynamics described by Eq.(4.30) and (4.31) depends critically on
the cooperative coupling NU0/κ of the atoms to the cavity fields, which can be
controlled via the number of atoms N .

For NU0/κ� α0, the cooperative coupling is very weak, so that the atomic
backaction onto the cavity fields may be disregarded. The cavity field decouples
from the atoms and quickly evolves into a steady state given by α̃ = α0. In
this case, the usual Bloch oscillations picture in which the motion of the atoms
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is governed by Eq.(4.30) can be recovered. For larger cooperative coupling, the
ring cavity comes into play. Now, the matter wave may not only scatters light
between the optical lattice beams, but it also cooperatively scatters photons
from the pumped cavity mode into the reverse one, which exerts influence on
the atomic dynamics. If NU0/κ � α0, the CARL mechanism dominates over
the Bloch oscillations dynamics. In this regime, the mechanism responsible
for transferring momentum to the atoms is no longer scanning through the
resonance like in the ARP method [79], but the backscattering of the pump
light by the self-generated atomic density grating [91]. As a consequence, the
population transfer between adjacent momentum states does not occur at the
regular Bloch periods, but may vary in time. Only for moderate cooperative
coupling (NU0/κ ≈ α0), a parameter range where both the CARL and Bloch
dynamics cooperate to set up a synchronized regime with regular and stable
Bloch oscillations is found. However, at some point, when the backscattering of
the pump light into the probe mode becomes stronger, the depth of the potential
formed in the cavity by interference of the pump and the counterpropagating
probe light may exceed the depth of the optical lattice generated by the external
beams. In this case, the CARL mechanism takes over and imposes its dynamics
on the atoms [62,71,91], dominating the Bloch oscillations.

Figs.4.4-4.6 illustrate the intricate dynamics in the regimes dominated by
either the Bloch oscillations or by the CARL dynamics, as well as an interme-
diate regime where both dynamics compete. Again, an ultracold cloud of 87Rb
atoms is chosen as an example to perform the numerical simulations. The atoms
interact with the light fields via their D2-line at λ0 = 780 nm, for which the
recoil frequency is ωr = (2π) 3.75 kHz and the Bloch oscillation frequency is
νb = 0.035ωr in the case when the accelerating force is given by gravity. The
other parameters are also assumed to be the same as in Chapter 3: the cavity
decay width κ = 160ωr, the pump-probe detuning δ = 0, the atom-mediated
coupling strength between the pump and probe fields U0 = 0.04ωr, and the
external optical potential depth W0 = 3.2ωr, which corresponds to |α0|2 = 400
photons in the pump laser beam. The control over the collective coupling is
done by varying the atom number between N = 4 · 104 and 12 · 104. These
parameters are perfectly realizable in state-of-the-art experiments. Besides, the
constant radiation pressure force that may be exerted on the atoms the by the
pump is assumed to be negligible and has no impact on the considered dynam-
ics, if the pump laser is detuned far from the atomic resonance (∆ ≥ 1.5 ·107ωr).
However, if it is not the case and the pump laser is tuned close to the atomic
resonance, the Bloch oscillation frequency may be altered, as it will be seen in
the next chapter.
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Fig.4.4 represents the regime dominated by the Bloch oscillations dynamics.
Fig.4.4(a) shows a typical evolution of the momentum state populations |Cn|2
as a function of scaled time νbt for the case of pure Bloch oscillations. The
population of each momentum state is put in evidence by a different color in
order to facilitate their visual distinction during the temporal evolution. As
can be seen, all atoms initially prepared in a single momentum state participate
in the dynamics. This is explained by the fact that throughout the evolution
the momentum transfer between adjacent momentum states remains fully effi-
cient. As a consequence, the Bloch oscillations persist for long times, as seen
in Fig.4.4(b) showing the evolution of the average atomic momentum in the
laboratory frame, 〈p〉lab = 〈p〉 + νbt with 〈p〉 =

∑
n n|Cn|2. After a transient

of approximately three Bloch oscillations, the population is efficiently restored
into the first Bloch band and the feedback provided by the cavity field onto the
atomic motion tends to assist the adiabatic rapid passages between momentum
states helping to complete the momentum transfer each Bloch period τb.

Moreover, the atomic Bloch oscillations dynamics is accompanied by the ra-
diation field reaching, after a transient, a stationary regime characterized by
periodic bursts of light emitted into the probe mode α at each oscillation. The
evolution of the intracavity photon number |α|2 in the probe mode is demon-
strated in Fig.4.4(c). The average photon number |α|2 ' 20 corresponds, for the
chosen value of κ, to a photon flux of ∼ 18400 s−1 outside the cavity behind the
output coupler, i.e., ∼ 140 photons/Bloch oscillation. Hence, the light bursts
appear to be perfectly detectable via a photon counter and provide a reliable
and stable monitor of the atomic motion.

In the intermediate regime, when both dynamics are present, only a fraction
of the atoms perform the Bloch oscillations, whereas the remaining atoms fail
to synchronize. This case is illustrated in Fig.4.5(a). The competition between
the CARL dynamics and the Bloch oscillations leads to irregular oscillation
frequencies, and the dispersion of the atoms over different momentum states
induces average atomic momentum drifts (see Fig.4.5(b)). Moreover, the bursts
of light in the radiation field shown in Fig.4.5(c) are no longer periodic and
cannot be used as a reliable signature of the atomic dynamics.

In contrast to the previous cases, in the regime dominated by the CARL
dynamics, the atoms quickly jump from one momentum state to the next one
in a superradiant fashion. This can be seen in Fig.4.6(a). The backscattering of
the pump light and the amplification of the coherent wave in the probe mode of
the ring cavity is accompanied by a rapidly increasing drift of the average atomic
momentum (see Fig.4.6(b)). At longer times the increase slows down because
the Doppler shift associated with the atomic motion drives the scattered light
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Figure 4.4: Time evolution of (a) the populations |Cn|2 of the momentum states,
(b) the average atomic momentum < p >lab in the laboratory frame with N =
4 · 104 atoms, and (c) the average number of photons |α|2 in the probe field in
the regime dominated by Bloch dynamics. The parameters used to perform the
simulations are: α0 = 20, νb = 0.035ωr, κ = 160ωr, δ = 0 and U0 = 0.04ωr.
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as functions of normalized time νbt in the regime where CARL and Bloch dy-
namics compete. The number of atoms used is N = 8·104, the other parameters
are the same as in Fig.4.4.
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out of the cavity resonance, and as a result the CARL force decreases. In this
regime, the radiation field experiences multiple light bursts per Bloch oscillation
period (see Fig.4.6(c)) and, consequently, its dynamics cannot be considered as
a reliable monitor of the atomic motion.

The transition between the discussed regimes is illustrated in Fig.4.7 that
shows the time evolution of the phase φ of the probe field α in the regime
of pure Bloch oscillations (blue), as well as in the intermediate case (purple)
and the regime dominated by CARL (red). Being absolutely unstable in the
case of the CARL dynamics, the phase fluctuations gradually decrease in the
intermediate regime, when the Bloch dynamics becomes stronger. And they
totally disappear when the Bloch oscillations dominate. Then the feedback
provided by the cavity stabilizes the Bloch oscillations, and after some transient
rapid oscillations, the phase remains locked to π/2 with only slight perturbations
at each Bloch oscillation.
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Figure 4.7: Phase φ of the probe field α in the CARL regime with N = 12 · 104

atoms (red), the intermediate regime with N = 8 · 104 (purple), and the regime
of pure Bloch oscillations with N = 4 · 104 (blue) as a function of scaled time
νbt. The remaining parameters are the same as in Fig.4.4.
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It is possible to conclude that the feedback mechanism of the atomic motion
onto the amplitude and phase of the counterpropagating light field, provided by
the atom-field coupling in the unidirectionally pumped optical ring cavity, can
be turned into an advantage. Whether the CARL and the Bloch oscillations
dynamics perturb each other or cooperate, depends on the collective atom-field
coupling strength. A certain range of parameters for which both dynamics set
up a synchronized regime is found. Indeed, for moderate collective coupling the
CARL feedback mechanism is suitable to get stabilized Bloch oscillations and
monitor non-destructively the dynamics of the ultracold atoms in the optical
lattice over long times.
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Chapter 5

Robustness of Bloch
oscillations of a BEC in a
ring cavity

In this chapter some specific properties of the investigated system, which may
occur under real experimental circumstances, are specified. Sec.5.1, for exam-
ple, demonstrates the importance of taking into account the radiation pressure
force in the considered unidirectionally pumped ring cavity setup and confirms
that the selected parameters are suitable to disregard the effect. The same set
of parameters is used to analyze the following features of the system, assuming
the impact of the radiation pressure force on the studied dynamics is negligibly
small. In Sec.5.2 and Sec.5.3 adverse effects such as dephasing mechanism due
to amplitude or phase fluctuations and accidental excitation of higher Bloch
bands are discussed, respectively. The mode-locking of the Bloch oscillations
generated by the cavity is accompanied by not only a significantly suppressed
interband tunneling, but also by a depopulation of the excited bands. Finally,
Sec.5.4 accounts for the atom-atom interactions, as they lead to a strong colli-
sional dephasing of the Bloch oscillations and rapid broadening of the average
momentum of the atomic system. However, even in the case of an interact-
ing BEC, the cavity has a control over the interaction induced dephasing and
guarantees a large number of regular and stable Bloch oscillations.
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5.1 Radiation pressure force effect

This section is devoted to a detailed analysis of the effect that the radiation
pressure force (RPF) has on the considered system. While transferring the
energy absorbed from the incoming pump laser beam into the form of scattered
light, the atoms of the condensate experience the RPF exerted by the pump
light. Generally, if the pump laser is tuned far from the atomic resonance
(Ωp � ∆) which in turn is much larger than the natural atomic linewidth
(∆� Γ), the RPF is negligibly small to be taken into consideration. However,
as it will be seen below, the RPF may significantly affect the examined dynamics.

5.1.1 Analytical description of the effect

In the presence of the radiation pressure force defined under the assumption
∆� Γ as

FRP (t) = − h̄kΓ

4∆2

(
Ω2
p − Ω2

1|α(t)|2
)

(5.1)

and imposing the potential FRP (t)x, the initial equations of motion for the
atomic wave function ψ and the probe mode α gain the following form :

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
− ih̄U0

(
αe2ikx − α∗e−2ikx

)
ψ (5.2)

− mgxψ − FRP (t)xψ + h̄
W0

2
sin(2kx)ψ,

dα

dt
= NU0

∫
|ψ|2e−2ikxd(2kx) + (iδ − κ)α. (5.3)

Here Γ = 1600ωr is the single-atom spontaneous decay rate, Ω1 = 54ωr is the
atom-field coupling strength, Ωp = 6240ωr is the Rabi frequency of the incident
pump light of intensity Ip = 50mW/cm2, and its detuning from the atomic
resonance is defined as ∆ = Ω1Ωp/4U0. Thereafter the procedure describing
the derivation of the studied model is repeated, see Chapter 2, with only one
difference: the RPF is now taken into account.

After moving into the accelerated frame of reference for the sake of conve-
nience, the atomic wave function is modified according to

ψ = ψ̃ exp

(
imgxt

h̄
+
i

h̄
x

∫ t

0

FRP (t′)dt′
)
. (5.4)
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5.1. Radiation pressure force effect

Note that due to the scattered field instability the RPF is no longer a constant
but a function of time, therefore, it appears as a time integral in the moving
reference frame. Thus, Eqs.(5.2) and (5.3) result in the following set of equa-
tions:

∂ψ̃

∂t
=

ih̄

2m

[
∂

∂x
+
imgt

h̄
+
i

h̄

∫ t

0

FRP (t′)dt′
]2
ψ̃ (5.5)

− U0

(
α̃e2ikx − α̃∗e−2ikx

)
ψ,

dα̃

dt
= NU0

∫
|ψ̃|2e−2ikxd(2kx) + (iδ − κ)(α̃− α0), (5.6)

where α = α̃ − α0 with α0 = W0/4U0. Then the atomic wave function ψ̃ is
expanded into plane waves

ψ̃ =
1√
2π

∑
n

Cn(t)e2inkx (5.7)

with |Cn|2 being the probability of finding the atoms in the nth momentum
state, and the definitions of the single-photon recoil frequency ωr = h̄k2/2m
and the Bloch oscillation frequency νb = mg/2h̄k are used. Eqs.(5.5) and (5.6)
then result in

∂Cn
∂t

= −4iωr

[
n+ νbt−

Γ

8∆2

(
Ω2
pt− Ω2

1

∫ t

0

|α(t′)|2dt′
)]2

Cn (5.8)

+ U0 (α̃∗Cn+1 − α̃Cn−1) ,

dα̃

dt
= U0N

∑
n

C∗n−1Cn + (iδ − κ)(α̃− α0). (5.9)

In comparison to the prior system where the RPF action is disregarded, in
this case an additional term appears in Eq.(5.8). This term corresponds to the
RPF occurring in the description and it certainly affects the Bloch oscillation
frequency. As a result, the expression for the average atomic momentum in the
laboratory frame is also modified according to

< p >lab=< p > +mgt− 2h̄kΓ

8∆2

(
Ω2
pt− Ω2

1

∫ t

0

|α(t′)|2dt′
)
, (5.10)

or equivalently, in terms of 2h̄k units:

< p >lab=
∑
n

n|Cn|2 + νbt−
Γ

8∆2

(
Ω2
pt− Ω2

1

∫ t

0

|α(t′)|2dt′
)
. (5.11)
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5.1.2 The impact of the radiation pressure force

Indeed, the RPF may have a great impact on the dynamics of the system. This
assertion can be demonstrated, for example, taking the parameters used in the
previous chapters, where the RPF is neglected. In particular, the average atomic
momentum given in both accelerated and laboratory frames in the presence of
the optical ring cavity is considered for the following set of parameters: νb =
0.035ωr, κ = 160ωr, δ = 0, N = 2 · 104, U0 = 0.04ωr and α0 = 20. For these
parameters, the RPF constant term ΓΩ2

p/8∆2 = 0.05νb induces the greatest
modification of 5% of the Bloch oscillation frequency, which is quite large to be
neglected.

Fig.5.1 shows the negative impact of such Bloch frequency variation on the
evolution of the system. For the case when the lattice potential is turned on
abruptly (Fig.5.1(a)), instead of the expected regular oscillations with the Bloch
frequency νb in the laboratory frame without the RPF (solid black curve), the
system dynamics in the presence of the RPF (dashed red curve) display an av-
erage atomic momentum modification caused by the frequency alteration. This
effect remains even if an adiabatic switch-on of the optical lattice is performed,
see Fig.5.1(b).

In addition to this observation, the evolution of the average atomic momen-
tum < p > represented in the moving reference frame reveals a slight change
in the slope of the corresponding dynamics for both adiabatic (Fig.5.1(c)) and
non-adiabatic (Fig.5.1(d)) switch-on of the optical lattice when the RPF is ap-
plied. The momentum transfer between adjacent momentum states is, however,
still complete and the ARP conditions are not violated. These may be seen, for
example, in Fig.(5.2), where the case of an adiabatic switch-on of the lattice is
selected for investigation and the time evolution of each momentum state pop-
ulation |Cn|2 in the presence of the RPF is given by a different color. Fig.(5.2)
makes it evident that at each Bloch oscillation cycle all atoms are successfully
transferred to the next nearest momentum state. Thus, the RPF effect that se-
riously affects the system for the chosen set of parameters is accompanied only
by the frequency modification, while the momentum transfer remains effective.

Another way to show the importance of including the RPF into the inves-
tigated setting is to look at the dynamics of the average number of photons
|α|2 and phase φ of the cavity mode α. Such dynamics is given in Fig.5.3 for
an adiabatic switch-on of the lattice potential. Without the RPF (solid blue
curve), a single prominent burst of light in the probe field is expected for each
Bloch oscillation period. However, when the RPF is taken into account (dashed
red curve), an increasing in time shift is observed in both the photon number
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Figure 5.1: Time evolution of the average atomic momentum in the laboratory
(left) and accelerated (right) frames in the presence of the cavity for the cases of
abrupt and adiabatic switch-on of the optical lattice when the RPF is essentially
important. The following parameters are used: νb = 0.035ωr, κ = 160ωr, δ = 0,
Γ = 1600ωr, Ω1 = 54ωr, Ωp = 6240ωr, N = 2 · 104, U0 = 0.04ωr and α0 = 20
for an abrupt switch-on of the lattice and α0(1− exp(−γt)) with γ = 0.1ωr for
an adiabatic switch-on.
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Figure 5.2: Population |Cn|2 of each momentum state given by a different color
as a function of νbt in the presence of the cavity and adiabatic switch-on of the
lattice potential in the case when the RPF needs to be taken into account. The
same parameters as in Fig.5.1 are used.
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Figure 5.3: Average number of photons |α|2 in the radiation field and phase φ
of the cavity mode α as functions of scaled time νbt for an adiabatic switch-on
of the lattice potential in the presence of the cavity for the cases when the RPF
is neglected (blue) and included (red). The same parameters as in Fig.5.1 are
used.
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and phase dynamics as a result of the Bloch oscillation frequency modification
imposed by the RPF. Since, for this choice of parameters, the bursts of light
in the radiation field have a periodicity different from the Bloch period, such
dynamics cannot be used as a reliable monitor of the atomic motion, and the
potential non-destructive measurement of the Bloch oscillation frequency fails.

The control over the RPF is a rather difficult task, so the better way to deal
with its negative impact is to make it very small. In order to neglect the RPF
effect, the additionally gained term due to the RPF in Eq.(5.8) must be very
small compared to the actual Bloch oscillation frequency νb, which requires at
least ∆ ≥ 1.5 · 107ωr or ∆ ≥ 35GHz. Also, the RPF effect is insignificant when
Ωp is small, i.e. the incident pump laser beam is rather weak. These conditions
can be reached by varying, for instance, the pump-probe coupling strength U0,
photon number |α0|2 and the number of atoms N , while keeping the rest of the
parameters unchanged.

The numerical simulations based on Eqs.(5.8) and (5.9) in the presence of
the RPF with the parameters N = 2 × 106, U0 = 0.004ωr and α0 = 200
reveal that the selected set of parameters is perfect to get rid of the negative
impact of the RPF on the studied system. Such parameters allow to diminish
the Bloch oscillation frequency modification to the corresponding value of 5 ×
10−4νb. As shown in Fig.5.4, both sudden (Fig.5.4(a)) and adiabatic (Fig.5.4(b))
risings of the optical lattice, in configuration with the cavity, demonstrate a
large agreement in the average atomic momentum dynamics in the cases with
and without the RPF. The only difference observed between the two cases is
the transient during the first few Bloch oscillation caused by the non-adiabatic
switch-on of the lattice, after which the dynamics stabilizes anyway.

The time evolution of the average number of photons |α|2 in the probe field
(see Fig.5.4(c)) also proves, as expected, that the effect of the RPF is negligible
for the chosen parameters. In comparison to the previous case when it is essential
and important to take into account the RPF, in this case the time-dependent
shift is not observed, since the RPF remains insignificantly small, and the light
bursts have the correct periodicity again. Moreover, the amount of photons in
the radiation field at each Bloch oscillation is perfectly detectable. Thus, this
dynamics is reliable and suitable to continuously track the atomic motion.

The impact of the RPF on the considered system can be alternatively de-
creased to the value of 5× 10−4νb by keeping the parameters U0 = 0.004ωr and
α0 = 200 the same, while reducing the cavity decay width to κ = 16ωr, which
in turn allows one to have a smaller amount of atoms, e.g., N = 2 × 105. A
larger cavity finesse F is required to realize the selected value of κ, since the
finesse of the cavity is inversely proportional to the cavity decay width. The
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Figure 5.4: Average atomic momentum in the laboratory frame with the cavity
as a function of normalized time for a) abrupt and b) adiabatic switch-on of
the lattice potential when the RPF is taken into account (dashed curves) and is
disregarded (solid curves). c) Time evolution of the average number of photons
in the probe field with and without the RPF effect for the case when the lattice
is turned on adiabatically. The used parameters are: νb = 0.035ωr, κ = 160ωr,
δ = 0, Γ = 1600ωr, Ω1 = 54ωr, Ωp = 6240ωr, N = 2 · 106, U0 = 0.004ωr and
α0 = 200.
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Figure 5.5: Smaller κ = 16ωr (or equivalently, larger finesse) is selected to
perform the dynamics of the average atomic momentum in the laboratory frame
(above) and the number of photons |α|2 in the radiation field (below) for an
adiabatic switch-on of the lattice potential in the presence of the cavity with
(red) and without (navy blue) the RPF impact. The used parameters are:
νb = 0.035ωr, δ = 0, Γ = 1600ωr, Ω1 = 54ωr, Ωp = 6240ωr, N = 2 · 105,
U0 = 0.004ωr and α0 = 200.

cavity finesse corresponding to the chosen set of parameters is F ' 20000.
The results of the numerical simulations performed using the above parame-

ters are shown in Fig.5.5. It is seen that the average atomic momentum given in
the laboratory frame of reference demonstrates identical behavior in both cases,
when the effect of the RPF is disregarded (navy blue solid curve) and when it is
taken into account (red dashed curve), like for the previous set of parameters.
Moreover, the time evolution of the photon number in the radiation field α in
the presence of the RPF duplicates the one obtained without the RPF impact.
However, a few Bloch periods are required for the bursts of light in the probe
field to stabilize in comparison to the previous case. Anyway, the increase of
the cavity finesse seems to be an effective way to fight against the undesirable
effect especially if one wants to have a smaller amount of atoms in the system
to approach real experimental conditions.
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Even though the RPF may play a crucial role in the dynamics of the consid-
ered system, it is always possible to find a range of parameters that allow one
to avoid the unwanted effect. However, to be able to disregard the RPF, high
attention to the choice of parameters is required. Note that all other features
of the system viewed in this chapter assume the RPF to be negligibly small
already.

It should also be noted that in order to perform a high precision gravity
measurement using the considered model, the pump laser must be detuned far
away from the atomic resonance. Otherwise, the intracavity light field Ωp may
exert a non-negligible constant radiation pressure force acting on the atoms,
which in turn may alter the measure of the atomic acceleration and, hence, the
frequency of the Bloch oscillations.
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5.2 Impact of fluctuations

It is well known that any unintended noise represents a limiting factor for mea-
surements, and the considered scheme is not an exception. That is why it is
important to gather information about the noises that may appear in the system
and consider their possible effect on the investigated dynamics. This section is
dedicated to the study of this specific issue. In particular, the system’s response
to a technical phase noise perturbing the optical lattice potential formed by the
standing wave and amplitude noise in the pump laser beam are discussed.

5.2.1 Phase fluctuations

In order to monitor the atomic dynamics in a non-destructive fashion, the Bloch
oscillations are required to be regular and persist for long times. This, however,
happens only if the atomic motion is perfectly adiabatic, i.e., there are no nega-
tive factors violating the ARP conditions (2.9), so that the interband transitions
are prevented. If the lattice potential is subject to, for example, a phase noise,
the adiabaticity can be easily broken and the atoms tunnel to the next higher
Bloch band resulting in a drift and diffusion of the atomic cloud’s momentum.
This subsection demonstrates that the cavity induced stability of the Bloch os-
cillations is a reasonable solution to the problem of the adiabaticity breaking
introduced by a mechanical noise.

To learn how stable the system is against a mechanical noise, a few sequential
random kicks of different amplitudes are applied to the phase of the optical
lattice potential. The noise modeled this way can be accounted for as, for
instance, an acoustic noise on the lattice mirrors. In the particular case discussed
below three chosen phase fluctuations of various amplitudes δφ = 0.16π, 0.37π
and 0.46π happen during the evolution at respective times τa = 3.6νbt, τb =
11.9νbt and τc = 22.3νbt. For all three phase modifications, the presence of the
ring cavity is demonstrated to bring back the stability of the system.

The Bloch oscillations appear to be very sensitive to such noise in the ab-
sence of the ring cavity as these randomly generated kicks in the lattice phase
drive a significant amount of atoms to other momentum states, and the red
dashed curve in Fig.5.6 clearly demonstrates this. This effect is also promi-
nently expressed in Fig.5.7(a) where the time evolution of the population of
each momentum state is identified by a different color. Since the optical lattice
is switched on adiabatically, the dynamics of the system without the cavity at
the beginning of the evolution demonstrate the characteristic periodic behavior
until the first phase kick takes place. This imposed noise that immediately vi-
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Figure 5.6: Dephasing of the average atomic momentum in the laboratory frame
induced by phase fluctuations of the lattice potential in the presence of the cavity
(solid black line) and without the cavity (red dashed line) when an adiabatic
switch-on of the optical lattice is performed. The simulations are realized using
the following parameters: νb = 0.035ωr, κ = 160ωr, δ = 0, N = 2 · 106, U0 =
0.004ωr and α0 = 200. During the evolution three phase kicks of amplitudes
δφ = 0.16π, 0.37π and 0.46π happen at respective times τa = 3.6νbt, τb = 11.9νbt
and τc = 22.3νbt.

olates the adiabaticity of the process is responsible for the steady drift of the
atomic momentum and leaves some atoms outside of the Bloch oscillations dy-
namics. The two subsequent phase kicks prove that the behavior of the system
is repeated. Besides, the larger the amplitude of the phase fluctuation, the more
atoms become lost from the dynamics since this process is seen by the system as
cumulative, i.e., every subsequent phase kick drives even more atoms to higher
Bloch bands.

The situation changes significantly in the presence of the ring cavity feed-
back. In this case, the cavity forces the atoms to stay synchronized and the
tunneling to the higher Bloch bands each time a phase fluctuation occurs is
surely prevented (see Fig.5.7(b)). This ability of the cavity to keep the whole
atomic population in the lowest band makes the Bloch oscillations robust against
the phase noise. Indeed, when the cavity is added to the system, the average
atomic momentum in the laboratory frame after each random phase kick returns,
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Figure 5.7: Various colors represent the time evolution of the momentum states
population |Cn|2 a) in the system without the cavity and b) in the presence of
the cavity and adiabatic switch-on of the lattice potential in both cases. Three
random phase kicks occur throughout the evolution. The same parameters as
in Fig.5.6 are used.
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Figure 5.8: Dephasing of the average atomic momentum in the laboratory frame
imposed by the large phase fluctuation δφ = 0.91π of the optical lattice hap-
pening at τ = 4.6νb in the presence of the cavity (solid black) and without the
cavity (red dashed). The other used parameters are the same as in Fig.5.6.

within a few Bloch oscillation periods, to the very same dynamics it had at the
beginning of the evolution (black solid curve in Fig.5.6). This phenomenon can
be understood from the fact that the atoms generate the radiation wave that
remains in phase with them until it synchronizes again with the optical lattice.
The presence of the cavity actually helps to smooth the change of the phase
of that wave. Therefore, the cavity is certainly a good tool to remove the neg-
ative impact of the applied noise on the dynamics of the system observed in
the case without the cavity. Even for a large phase fluctuation, for example,
δφ = 0.91π, the cavity induced feedback works well (see Fig.5.8) with only a
slightly longer time required to stabilize the system in comparison to the kicks
of smaller amplitudes shown in Fig.5.6.

Since the dephasing induced by the phase fluctuations of the standing wave
forming the optical lattice may be neutralized by the cavity, the non-destructive
mechanism to monitor the atomic dynamics is still valid. In fact, Fig.5.9 shows
that in the presence of the cavity the bursts of light in the probe field used to
control the atomic motion stabilize shortly after each phase kick. This stabi-
lization is certainly a result of the feedback provided by the cavity field on the
optical lattice. It brings back the normal behavior of the system characterized
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Figure 5.9: Number of photons |α|2 in the probe field as a function of νbt in
the presence of the cavity. The present dynamics is a result of a few random
fluctuations in the lattice potential phase. The same parameters as in Fig.5.6
are used.

by a single light burst per Bloch oscillation period and maintains the mechanism
effective over time for any phase modification δφ ∈ [0, π].

The model of the system given by Eqs.(2.7) and (2.8) gives rise to another
interesting fact. So far the stability of the cavity setup against mechanical
noise was tested using random kicks in the optical lattice phase. However, this
external lattice potential can be equivalently generated by an additional laser
beam pumping the probe mode of the ring cavity and having the same phase
and frequency as the pump laser. Thus, the phase fluctuations of the optical
lattice can be associated with the phase perturbations in the cavity field. Even
though the random phase kicks could be applied to the cavity wave instead of
the lattice potential, the system would still demonstrate the same process of
stabilization of the Bloch oscillations, since in this case the optical lattice would
in turn provide a feedback onto the cavity field, enforcing the synchronization
and a large reduction of the imposed noise.
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5.2.2 Amplitude fluctuations

In general, most contemporary experimental laboratories have in their posses-
sion lasers of great amplitude stability over a wide range of frequencies. How-
ever, an unexpected amplitude noise may still affect the studied system that is
based on a feedback mechanism. The influence of possible amplitude fluctua-
tions of a laser on the investigated dynamics may even be drastic. To examine
the potential impact of the pump laser amplitude modulation on the time evo-
lution of the system with and without the optical ring cavity, two cases are
considered.

First of all, to make sure that even a short-term modification of the laser
amplitude results in a deviation from the expected dynamics, the case when the
amplitude changes spontaneously and then immediately returns to the initial
value within a single Bloch period is simulated in Fig.5.10. Fig.5.10(a) represents
the average atomic momentum in the laboratory frame as a function of scaled
time νbt in the presence of the cavity (solid red curve) and without the cavity
(dashed purple curve). For this particular simulation a rather large amplitude
kick of 30% is taken to make the difference between the two dynamics more
prominent. For a fairly small amplitude modification longer evolution times are
required in order to notice the disagreement in the average atomic momentum
behavior in the presence of the cavity and without the cavity. As can be seen in
Fig.5.10(a), even a single random kick of short duration ∆τ = τb − τa (in this
case ∆τ = 0.75νbt with τa = 5.1νbt and τb = 5.85νbt) in the laser amplitude
leads, sooner or later, to an atomic momentum drift in the absence of the cavity,
while the cavity imposed feedback does not let the drift to occur. Due to the
kick in the laser amplitude, the dynamics in the presence of the cavity become
slightly distorted for a short while and return to normal within a few Bloch
periods. The number of photons |α|2 in the radiation field also demonstrates
a regular and stable behavior with only a short-term defect after which the
dynamics is restored, see Fig.5.10(b). However, the fact that the system with
the cavity is stable against a single amplitude modulation of the pump laser
beam does not guarantee the stability in the case when a continuous amplitude
noise is applied.

Fluctuations in the laser amplitude are often of continuous nature. Let us
now see how the system reacts to such constantly active noise. To perform
the simulations related to this case a continuous deviation of the pump laser
amplitude is selected such that at each integration step the amplitude becomes
modulated randomly by ±1, 5% of its initial value. The results of the numer-
ical simulations are presented in Fig.5.11. For an adiabatic switch-on of the
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Figure 5.10: a) Time evolution of the average atomic momentum in the labo-
ratory frame in the presence of the cavity (solid red) and without the cavity
(dashed purple) for an adiabatic switch-on of the lattice potential. b) Dynamics
of the number of photons in the radiation field as a function of time. A 30%
kick in the pump laser amplitude of duration ∆τ = 0.75νbt (τa = 5.1νbt and
τb = 5.85νbt) happens throughout the evolution, after which the amplitude is
back to the initial value. The following parameters are used to perform the
simulations: νb = 0.035ωr, κ = 160ωr, δ = 0, N = 2 · 106, U0 = 0.004ωr and
α0 = 200.
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Figure 5.11: a) Average atomic momentum in the laboratory frame with (solid
red) and without (dashed green) the cavity, when the optical lattice is turned
on adiabatically, and b) photon number |α|2 in the probe field as functions of
scaled time νbt. An amplitude noise of ±1, 5% is constantly present in the pump
laser during the evolution of the system. The same parameters as in Fig.5.10
are used.
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optical lattice the average atomic momentum < p >lab in the absence of the
cavity displays a drift caused by the amplitude noise (see dashed green curve in
Fig.5.11(a)). The presence of the cavity instead ensures the same characteris-
tic behavior of the dynamics even with additional noise (see solid red curve in
Fig.5.11(a)). Thus, it has been confirmed again that the presence of the cavity
influences the dynamics of the system in a positive way, preventing the atoms
from tunneling to the excited Bloch bands. Despite the noise in its dynamics,
the number of photons |α|2 in the probe field show a characteristic behavior as
well, which still demonstrates a prominent burst of light per Bloch period and
allows the atomic motion to be traced non-destructively, as before.

Although special care is usually taken to eliminate noise sources such as laser
amplitude and phase fluctuations, which may limit the preferred measurement
approach, the cavity feedback mechanism provides an additional protection and
guarantees the stability of the system against unintended technical noises.
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5.3 Clearance of excited Bloch bands

The model under consideration reveals another interesting feature that is very
welcomed in real experiments. When an ultracold atomic cloud is created, all
atoms are believed to be in a single momentum state associated with the only
non-excited Bloch band. However, in reality, an insignificantly small amount
of atoms inevitably ends up residing initially in other momentum states. This
quantum depletion of the condensate happens due to the interparticle interac-
tion resulting in some atoms being pushed out of the condensate. Therefore,
even at zero temperature there is always a fraction of the atoms with nonzero
momenta. Even though this is usually the case, the proposed mode-locking
mechanism clears up the excited bands, bringing the atoms back to a single
momentum state in the presence of the cavity.

To demonstrate this phenomenon the Bloch oscillation dynamics is simulated
via Eqs.(2.7) and (2.8) with an initial momentum states distribution for both
cases with and without the cavity. The results of the numerical simulations
are shown in Fig.5.12(a) and Fig.5.12(b), respectively. The atoms are first
distributed over several momentum states, say 75% of the atoms occupy the
state n, while the adjacent momentum states n− 1 and n+ 1 contain 12,5% of
the total amount of atoms each. The chosen value of 12,5% is clearly too large
for an excited state population in comparison to what can actually be realized
experimentally, and simply has a demonstrative purpose only. Thus, starting
out from that initial atomic distribution, we compare the time-evolution of the
populations |Cn|2 of the momentum states for the cases when the cavity is added
to the system and without the cavity.

Fig.5.12(a) shows that, if the cavity is not present, the distribution remains
unchanged after a few oscillations with only the atoms that initially were in
the nth state executing Bloch oscillations within the lowest Bloch band. In the
presence of the cavity, the whole population condenses to a single momentum
state instead after some wild transients, and the excited bands become depop-
ulated, which is seen in Fig.5.12(b). The population of each momentum state
during the evolution is shown by a different color in order to facilitate their
visual distinction. Also, the total population represented by the blue line on
the top of each picture is verified to stay equal to unity during the evolution, so
no atomic loss is observed.

Furthermore, it should be noted that the way the optical lattice containing
the atoms is switched on does not really affect this fascinating feature of excited
bands clearance. Indeed, the evolution of the momentum states population
given in Fig.5.13 for a sudden switch-on of the lattice potential in the presence
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Figure 5.12: Time evolution of the populations |Cn|2 of the momentum states
when the atoms are initially distributed over the states n− 1, n and n+ 1 with
|Cn−1|2 = |Cn+1|2=0.125 and |Cn|2=0.75 for the case of a) adiabatic switch-on
of the optical lattice without the cavity, b) adiabatic rising of the lattice in the
presence of the cavity. Various colors representing the population dynamics of
each state are taken to ease visual distinction between the curves. The following
parameters are used: N = 2·106, νb = 0.035ωr, κ = 160ωr, δ = 0, U0 = 0.004ωr,
and the lattice is switched on adiabatically via α0(1−exp(−γt)) with γ = 0.1ωr
and α0 = 200.
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of the cavity, compared to the dynamics shown in Fig.5.12(b), confirms this
statement. Thus, it is possible to undoubtedly conclude that no matter how
the lattice is turned on, adiabatically or non-adiabatically, the mode-locking of
Bloch oscillations imposed by the cavity leads to a depopulation of the excited
Bloch bands adjacent to the non-excited one, forcing the atoms to stay within
the lowest Bloch band even though they initially were distributed over several
momentum states. Even if an accidental excitation of higher bands happens due
to a sudden non-adiabatic switch-on of the optical lattice potential, the mode-
locking mechanism is capable for refocusing the whole atomic population in the
lowest Bloch band. This might serve as a practical advantage, for instance,
to prevent long-term atomic momentum drifts throughout the evolution of the
system.
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Figure 5.13: The same situation as in Fig.5.12(b) is modeled for an abrupt
switch-on of the optical lattice in the presence of the cavity.
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5.4 Impact of collisions

In order to maximally approach the experimental conditions, another important
effect needs to be taken into consideration. Up until now the interaction between
the atoms has been disregarded in sufficiently dilute atomic clouds. However, it
is known that the interatomic interaction is always present in a real BEC and it
induces a dephasing that negatively affects the dynamics of the system. Thus, if
it is impossible to operate in the dilute density limit of a BEC, a way to reduce
or even eliminate the impact of interactions should be found. In this section the
effect of the atom-atom interactions on the system’s evolution is investigated in
great detail and an optical ring cavity added to the system is once again proven
to be a good stabilizer of the performed dynamics.

To describe the behavior of the system including the interatomic interac-
tion, the basic CARL-BEC model discussed in Chapter 2 needs to be slightly
modified. In particular, Eq.(2.7) gains an additional term on its right-hand
side, which secures the constant amount of atoms in the system throughout
the evolution. This term represents the atom-atom interactions approximated
by binary collisions, so that the equations used to simulate the impact of the
atomic interaction effect have the following form [114]:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
− ih̄U0

(
αe2ikx − α∗e−2ikx

)
ψ (5.12)

− mgxψ + h̄
W0

2
sin(2kx)ψ + 2πβ|ψ|2ψ,

dα

dt
= NU0

∫
|ψ|2e−2ikxd(2kx) + (iδ − κ)α, (5.13)

where the interaction strength

β =
4h̄kasN

mΣ
, (5.14)

as is the interatomic scattering length and Σ is the atomic cloud cross-section
perpendicular to the optical axis x.

After moving into the accelerated frame of reference and expansion of the
atomic wave function ψ into plane waves, assuming that the atomic cloud is
homogeneous and its size is much longer than the radiation wavelength, Eqs.
(5.12) and (5.13) become:
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∂Cn
∂t

= −4iωr (n+ νbt)
2
Cn + U0 (α̃∗Cn+1 − α̃Cn−1) (5.15)

− iβ
∑
k,l

CkClC
∗
k+l−n,

dα̃

dt
= U0N

∑
n

C∗n−1Cn + (iδ − κ)(α̃− α0). (5.16)

This set of ordinary differential equations is solved numerically for a moder-
ate interaction strength β ' ωr, and the results of the simulations for both cases
with and without the cavity and adiabatic switch-on of the lattice potential are
shown in Fig.5.14 and Fig.5.15. The time evolution of the average atomic mo-
mentum in the laboratory frame (see Fig.5.14(a)) reveals that no drift in the
momentum is caused by the atomic collisions in the presence of the cavity (solid
red curve) unlike the case without the cavity (dashed blue curve), where the
average momentum of the atomic system starts drifting. This interaction in-
duced dephasing of the Bloch oscillations in the absence of the cavity and rapid
broadening of the atomic momentum in the first Brillouin zone clearly prevent
the non-destructive monitoring of the atomic dynamics limiting the observation
to only a few Bloch oscillations in a BEC of typical atomic density. On the
other hand, in the presence of the cavity the atom-atom interactions do not
drive the atoms to other momentum states and the capability to observe a large
number of Bloch oscillations on extended time scales is efficiently restored. The
latter can also be seen in Fig.5.14(b), where the number of photons in the probe
field is given as a function of time and each prominent light burst corresponds
to a Bloch oscillation period, with only a slight noise in the dynamics, which
occurs due to the additional non-linear term in Eq.(5.15), which represents the
collisions.

Further evidence of the positive impact of the cavity on the system including
the effects caused by the interatomic interaction is the dynamics of the popula-
tions |Cn|2 of the momentum states, presented in Fig.5.15 by a different color to
make the visual distinction between the curves easier. The collisional dephasing
in the case without the cavity is responsible for the loss of the atoms from the
dynamics. Indeed, the momentum transfer between adjacent momentum states
is non-efficient in the absence of the cavity, therefore some atoms remain in
the previous states with less and less atoms undergoing Bloch oscillations, see
Fig.5.15(a). With the cavity, the induced dephasing is definitely suppressed and
all atoms are forced to perform the Bloch oscillations (Fig.5.15(b)).
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Figure 5.14: Impact of atomic collisions on the time evolution a) of the average
atomic momentum in the laboratory frame in the presence of the cavity (red) and
without the cavity (blue) and b) number of photons |α|2 in the radiation field,
when the optical lattice is turned on adiabatically. The assumed interaction
strength β ' ωr corresponds to a typical experimental situation: as = 110aB
for 87Rb, where aB is the Bohr radius, and Σ ' 300µm2. The rest of the
parameters are: N = 2 · 106, νb = 0.035ωr, κ = 160ωr, δ = 0, U0 = 0.004ωr,
and the lattice is switched on adiabatically via α0(1−exp(−γt)) with γ = 0.1ωr
and α0 = 200.

97



Chapter 5. Robustness of Bloch oscillations of a BEC in a ring cavity

0 5 10 15

0.5

1

 ν
b
t

 |
C

n
| 

2

a)

0 5 10 15

0.5

1

 ν
b
t

 |
C

n
| 

2

b)

Figure 5.15: Influence of the atom-atom interactions on the time evolution of the
populations |Cn|2 of the momentum states when the optical lattice is switched
on adiabatically for the cases a) without the cavity and b) in the presence of the
cavity. The same parameters as in Fig.5.14 are used to perform the simulations.
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Conclusion

The system considered in this thesis is an ultracold atomic cloud confined in a
vertical optical standing wave and undergoing Bloch oscillations under the in-
fluence of gravity. After a unidirectionally pumped optical ring cavity is added
to the system, the atoms interact not only with the confining lattice potential,
but with the two counter-propagating cavity modes too. The atomic motion
in such environment is shown to act back onto the intracavity light fields and
imprint into their phase and amplitude detectable signatures. In a certain range
of parameters, this feedback known as collective atomic recoil lasing (CARL)
evolves into a regime where it cooperates with the Bloch oscillations dynamics.
Indeed, if the collective atom-field coupling strength is too large (NU0/κ� α0),
the CARL mechanism takes over and imposes its dynamics on the atoms, dom-
inating the Bloch oscillations. However, for a moderate coupling (NU0/κ ≈ α0)
both the CARL and Bloch dynamics collaborate to set up a synchronized regime
characterized by regular and stable Bloch oscillations. The transition between
the competing one another dynamics to the synchronized regime is studied in
detail in Chapter 4, and a set of parameters suitable to obtain stabilized Bloch
oscillations is found.

The detailed investigation of the system without the ring cavity, provided
in Chapter 2, reveals the most crucial condition to be able to observe regular
Bloch oscillations for long times. This is only possible if the atomic motion is
perfectly adiabatic. However, if the optical lattice is turned on in a non-adiabatic
fashion or it is subject to amplitude or phase noise, the adiabatic rapid passage
conditions (νb/8ωr � (W0/16ωr)

2 � 1) become violated and the atoms can
quickly tunnel to the next higher Bloch band, which leads to the average atomic
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momentum drifts. To prevent that and keep the momentum transfers upon
Bragg reflections fully complete, a careful selection of parameters is absolutely
necessary in the case of an adiabatic switch-on (α0 = α̃0(1 − exp(−γt)) with
γ � νb) of the lattice potential without the cavity. Another possible way to
circumvent this problem is to let the atoms simultaneously interact with an
optical ring cavity added to the system.

Chapter 3 shows that the presence of the ring cavity turns out to be sur-
prisingly beneficial. The scattered field in the reverse cavity mode induces
a positive feedback on the atomic evolution by efficiently restoring the whole
atomic population in the first Brillouin zone after some transient of a few Bloch
periods, independently on the way of the lattice potential switching in the ini-
tial phase. As a result, the transitions between adjacent momentum states are
totally successful and the atomic momentum drifts are surely prevented. Due to
the cavity-induced feedback the atomic Bloch oscillations become synchronized
through the so-called mode-locking mechanism that enforces the adiabaticity of
the system. Even in the presence of adverse effects discussed in Chapter 5 the
ring cavity makes the atoms execute synchronous Bloch oscillations.

Since the theoretical work presented in this thesis is based on a real ex-
periment which is currently under construction at the Institute of Physics of
São Carlos, University of São Paolo, Brazil, the reality of the laboratory set-
ting is taken into account. For instance, the radiation pressure force (RPF)
experienced by the atoms is usually neglected under the assumption that the
incident pump laser is tuned far from the atomic resonance (Ωp � ∆,∆� Γ),
even though this effect is always present for all matter-light interactions. It is
demonstrated that including the RPF effect imposes a significant (5%) mod-
ification on the Bloch oscillation frequency, which is too large to be ignored.
However, the undesirable effect can be avoided by careful selection of the cor-
rect experimental parameters. It should be noted that another strength of the
theoretical model is that it applies to any atomic species which are commonly
used in atomic physics experiments, although with specific parameters for each
of them. The parameters discussed in this work apply to 87Rb ultracold atoms,
however, the experimental setup in Brazil will use an atomic cloud of 88Sr, for
which the parameters are the following: N = 104, νb = 0.025ωr, κ = 125ωr,
δ = 0, U0 = 0.1ωr and α0 = 10.

Another aspect that is considered is the presence of noise in the experimental
setup. In particular, a phase noise which perturbs the optical lattice, from, for
example, acoustic vibrations on the lattice mirrors, and amplitude noise from
natural fluctuations in the laser power are introduced. Modelling both sources of
noise as random kicks demonstrates the high sensitivity of the Bloch oscillations
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to small perturbations. In the absence of the cavity feedback mechanism, the
simulated phase noise drives a significant amount of atoms to other momentum
states, resulting in a momentum drift which leaves some atoms outside of the
expected dynamics. The presence of the cavity prevents tunnelling to higher
Bloch bands and forces the atoms to remain synchronized, leaving the system
robust against phase noise. In terms of the amplitude noise, where both single
and continuous kicks in the pump laser are simulated, it can be seen that atomic
momentum drifts can occur in the absence of the cavity. With the cavity, atoms
are prevented from tunnelling to excited Bloch bands and the effect of the noise
is greatly suppressed. Thus, although in experimental setups a large amount
of care goes into preventing noise from affecting the system, the ring cavity
dynamics offer an extra layer of robustness to noise which cannot always be
completely isolated.

A further related benefit of the ring cavity is the clearing of excited Bloch
bands which may be already populated at a non-adiabatic switch-on of the
optical lattice or accidentally happen throughout the evolution affected by noise.
The ability of the cavity to recover these atoms back into the non-excited band
means that all atoms can participate in the Bloch oscillations, increasing the
effectiveness of the measurement. Even in the exaggerated simulation case where
only 75% of the atoms start in the lowest Bloch band, the cavity can recover the
rest of the atoms back into the dynamics after only a few oscillations with short-
lived transient behavior for the first few Bloch periods. Thus, the presence of
the cavity provides not only stability in the experimental setup, but also ensures
maximum efficiency.

The effect of interatomic interactions is also considered beyond the initial
state of the condensate. The effect of the ring cavity on the studied system is
seen in the case where the atom-atom interactions are not neglected, which is
of particular importance to the real experimental setup where a dilute ultracold
atomic cloud might not always be achieved. Here, the interatomic collisions
can cause a drift in the atomic momentum as the system evolves, resulting in
dephasing of the Bloch oscillations. However, introducing the cavity to the
system prevents collisional dephasing of the atomic cloud and ensures that all
the atoms continue being available for subsequent Bloch oscillations.

The advantage of the considered scheme is not only to reach the regime of
self-stabilized Bloch oscillations persistent for long times, but also continuously
monitor their dynamics via the cavity field on the photon counter. Indeed, the
radiation field reaches a stationary regime characterized by perfectly detectable
periodic bursts of light emitted at each Bloch period, which can serve as reliable
signatures of the Bloch oscillations without perturbing their periodicity. Thus,
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the observed light bursts in the probe cavity mode provide a non-destructive
monitor of the atomic Bloch oscillations. The discussed adverse effects may,
however, degrade the ability of the system to reliably track the atomic motion
and limit the potential for continuous observation of the Bloch oscillations dy-
namics. Even though great care is always taken to reduce the impact of the
experimental non-ideal effects on Bloch oscillation measurements, in the cases
where these cannot be avoided the ring cavity feedback mechanism acts to sup-
press the negative effects completely. This ensures that even outside of idealized
settings the ring cavity allows for non-destructive measurement of the Bloch os-
cillations, thus showing the practical benefits of the presence of the cavity.

Applying the features studied in this thesis to real atomic gravimeters based
on observation of Bloch oscillations would offer great improvements as the
gravimetry process can be effectively reduced to making a single non-destructive
measurement with just one atomic sample, drastically descreasing the labori-
ousness of current detection methods. The upcoming experiment is expected to
make extensive use of the considered system, being the first experiment of its
kind to measure gravity to a high degree of accuracy through multiple Bloch
oscillations of a single atomic cloud.
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Appendix A

Derivation of angle β

In the main body of Chapter 2 the studied model is described. A periodic
potential is initially created to trap the atomic cloud in the vertical arm of the
ring cavity (see Fig.2.1), so that the atoms execute Bloch oscillations under the
action of the applied gravitational force. This optical lattice can be generated
by, for example, two far detuned from the atomic resonance external laser beams
with wavevectors

K1,2 = K

 cos β2
± sin β

2
0

 , (A.1)

crossing each other under the angle β at the location of the atoms. Here,
the phase of the laser light is generalized to (K1,2 · r − ωt) by replacing the
wavenumber with a wavevector that specifies the direction of a plane wave in
3D-space, parameterized by the position vector r.

The external laser beams generate the following optical potential:

Vext(r) =

∫
[sin(K1 · r− ωt) + sin(K2 · r− ωt)]2 dt (A.2)

=

∫
4 sin2

(
K1 + K2

2
· r− ωt

)
cos2

(
K1−K2

2
· r
)
dt (A.3)

= 4 cos2
(

K1−K2

2
· r
)

= 2 + 2 cos [(K1 −K2) · r] (A.4)

= 2 + 2 cos

(
2Ky sin

β

2

)
. (A.5)
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This potential should be commensurate with the standing wave potential formed
by the cavity modes, Vcav = 2 + 2 cos(2ky), so that the condition

K sin
β

2
= k . (A.6)

must be fulfilled. This can be achieved, e.g., using an external laser with wave-
length λ0 = 532 nm, for which the above condition reads as:

2π

λ0
sin

β

2
=

2π

λ
, (A.7)

where λ = 780 nm corresponds to the rubidium D2 transition. For these pa-
rameters, the condition (A.7) results in β = 86◦.
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Appendix B

Origin of transient

It is obvious that the ARP approximation is not sufficient enough to describe
entirely the evolution of the system during the first few Bloch oscillations. The
reason is that other momentum states being populated as well have an impact
on the momentum transfer between the states n and n − 1. As an example,
let us consider only five momentum states: n + 1, n, n − 1, n − 2 and n − 3.

Cn+1 = 0 

Cn = 1 

Cn-1 = 0 

Cn-3 = 0 

Cn-2 = 0 

Cn-4 

Cn-3 

Cn-2 

Cn-1 

Cn  

Cn-4 

Cn-2 

Cn-5 

Cn-3 

Cn-1 

… 
Figure B.1: Five momentum states scheme. All atoms are assumed to be initially
in the nth momentum state. Each Bloch period τb the system undergoes a
transition to a lower momentum state, while the upper state is eliminated due to
its expected null population and an additional lower state is introduced instead.
The initial conditions for a subsequent Bloch oscillation are taken from the
numerical solution of Eqs.(2.7) and (2.8) for the previous transition.
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All atoms initially are in the nth momentum state, so that Cn(0) = 1 and
Cn+1(0) = Cn−1(0) = Cn−2(0) = Cn−3(0) = 0. The dynamics of the system is
determined by self-consistent Eqs.(2.7) and (2.8) derived in Sec.2.1. The same
set of equations can be solved numerically for each transition happening every
t′ = τb, keeping the final atomic distribution after a previous Bloch oscillation as
the initial condition for the successive one and the total number of momentum
states equal to five (see Fig.B.1).

While the ARP approximation based on the assumption α̃ ≈ α0 (no cavity)
assumes that only two adjacent momentum states are involved into the sys-
tem’s dynamics during each Bloch period τb, and all atoms from the nth state
are expected to be transferred to the state n − 1 during the first oscillation,
other momentum states in reality become populated too. Fig.B.2(a) clearly
demonstrates that with no cavity a significant amount of atoms end up in the
state n+ 1 after the first transition, the population of which in the case of ARP
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Figure B.2: These pictures show the dynamics of the system during the first
three Bloch oscillations in the five states approximation. The upper row of
the pictures corresponds to the case without the cavity, where it is clearly seen
that the upper momentum state remains populated till the end of the third
transition. The lower row of the pictures represents the case when the cavity
is present, and the upper state after each transition stays unpopulated. The
selected rubidium parameters from Fig.3.2 are used.
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approximation is supposed to be zero. Thus, the presence of other momentum
states plays an important role in the dynamics of the system. It also explains
why ARP fails to describe the transient and can be adopted only for a long-term
evolution. When the (n + 1)th state is eliminated due to its assumptive null
population after the first transition and the state n − 4 is taken into consid-
eration instead (Cn−4 = 0) in order to keep the same amount of momentum
states participating in the evolution of the system during the second Bloch pe-
riod (see Fig.B.1), the dynamics obviously looses some atoms from the removed
(n + 1)th state. Note that the atoms can only be lost from the Bloch oscilla-
tions dynamics, but not from the system itself, since the considered model is
designed in a way that does not let the atoms to escape the system and the total
amount of atoms remains constant. Repeating the described above procedure
a few more times (Fig.B.2(b) and Fig.B.2(c)), it is possible to observe that the
third transition leads to the upper momentum state population to be reduced
to zero, and as a consequence the atomic loss from the dynamics is terminated.
In the presence of the ring cavity, however, the atoms would not be lost, since
the cavity does not allow the atoms to remain in the upper momentum state at
the end of each transition, which is shown in Fig.B.2(d)-(f).

To determine the amount of atoms that may be missing from the dynamics
after the first few Bloch oscillations if the ARP approximation is adopted in
the case without the cavity, ten consecutive transitions are considered and the
total momentum states population at the beginning of each of them is plotted in
Fig.B.3. Blue circles in Fig.B.3 confirm that the cavity stabilizes the system in
such a way that the atomic loss from the dynamics is significantly suppressed by
keeping the upper momentum state unpopulated at the end of each oscillation.
However, a loss of about 6.5% of the atoms is observed before it is terminated
by the dynamics in the case without the cavity, which is shown by red squares
in Fig.B.3. The fact that the ARP approximation is missing other momentum
states prevents accurate description of the transient in the system’s dynamics
during the first few Bloch periods. Certainly, more momentum states are taken
into consideration, closer to the real evolution of the system and its better under-
standing one gets. Yet even with the restrictions, the five states approximation
allows to demonstrate the necessity to take into account all momentum states
and their influence on each transition.
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Appendix B. Origin of transient
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Figure B.3: Total population of the momentum states at the beginning of each
transition in the five states approximation in the presence of the cavity (blue
circles) and without the cavity (red squares). The cavity constrains greatly the
atomic loss from the Bloch oscillations dynamics during the evolution, while
without the cavity a loss of about 6.5% of the atoms is experienced during
the first three transitions after which the atomic loss is terminated. The same
parameters as in Fig.B.2 are used.
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Phys. Rev. Lett. 70, 3319 (1993).

[7] S.Chu, Science 253, 861 (1991).

[8] C. Cohen-Tannoudji, in Fundamental Systems in Quantum Optics, J. Dal-
ibard, J. M. Raimond, J. Zinn-Justin, eds., Elsevier, Amsterdam (1992).

[9] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev.
Lett. 76, 4508 (1996).

[10] S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, M.G. Raizen, Phys.
Rev. Lett. 76, 4512 (1996).

[11] M.G. Raizen, C. Salomon, and Q. Niu, Phys. Today 50, 30 (1997).

[12] M. Inguscio and L. Fallani, Atomic Physics: Precise Measurements and
Ultracold Matter, Oxford University Press, New York (2013).

113



Bibliography

[13] M. Glück, A.R. Kolovsky, H.J. Korsch, and N. Moiseyev, Eur. Phys. J. D
4, 239 (1998).

[14] M. Holthaus, J. Opt. B: Quantum Semiclassical Opt. 2, 589 (2000).

[15] J. Zapata, A.M. Guzmán, M.G. Moore, and P. Meystre, Phys. Rev. A 63,
023607 (2001).

[16] Q. Thommen, J.C. Garreau, and V. Zehnlé, Phys. Rev. A 65, 053406
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Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 96, 033001 (2006).
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